GENERAL HELICOIDS WITH POINTWISE 1 - TYPE GAUSS MAP

Athoumane Niang ${ }^{1}$

Abstract

It is well known that the Gauss map of a constant mean curvature surface is point wise 1-type. In this paper, we show that if the Gauss map of general helicoids is pointwise 1 - type then, it's mean curvature is a constant.

Keywords and Phrases : hypersurface, mean curvature, Gauss map
Résumé. On montre que si le laplacien de l'application de Gauss d'un hélicoide lui est proportionnel alors sa courbure moyenne est constante.

[^0]
1 - Introduction

In the framework of the theory of finite type submanifolds (see [1], [2]), the authors of [3] raise the following problem.

Classify all submanifolds in m-Euclidean space E^{m} (or in E_{1}^{m}) satisfying the following equation $\Delta G=f G$ (1)

Where Δ is the Laplacian of the induced metric, G the Gauss map of the map of the submanifold, and for some function f on the submanifold.

Definition 1.1. The Gauss map of an hypersurface is said to be pointwise 1 - type if the condition (1) is satisfied.

The authors of [3] have classified ruled surfaces in the Minkowski 3 -space E_{1}^{3} with pointwise

1 - Type Gauss map.
In the paper [4], a characterization of the helicoids as ruled surface in the Euclidean 3 - space with pointwise 1 - type Gauss map is obtained.

On the other hand, some classes of submanifolds in the pseudo-Euclidean space with finite Gauss map are studied in [5] and [6]. Choi and Piccini in [7] made a general study on submanifolds of Euclidian spaces with finite type Gauss map and classified the compact surfaces with 1 - type Gaus map.

In the papers [8] and [9], respectively, the rotation surfaces in the Euclidean space E^{3} and rotation surfaces in the Minkowski space E_{1}^{3} with pointwise 1 - type Gauss map have been studied and a characterization theorem of them is obtained. In this paper, we generalize the characterization for the class of general helicoids. Let us recall the following. a kinetic property of a rotation surface is its invariance by a rotation around its axis. Such a property is satisfied by cylinders and by the wide class of the general helicoids which contains the cylinders and the rotation surfaces as limit cases.

It is well-known that the Gauss map of a constant mean curvature surface is pointwise 1-type ([6]).

On main result is :
Theorem 1.2. If the Gauss map of a general helicoids in the Euclidean 3 - space is pointwise 1 - type, then its mean curvature is a constant.

In this paper, we will assume that all surfaces are connected and all objects are at least of class C^{3}. We will use freely the notation of vectors by columns or by lines.

2 - Preliminaries

Here, we recall some fundamental formulas for surfaces to be used later in this work. Assume that M is a surface in the Euclidean 3 - dimensional space E^{3} with it's canonical metric denoted by $\langle,,$.$\rangle .$

For two vectors $V=\left(X_{1}, X_{2}, X_{3}\right)$ and

$$
\begin{gather*}
W=\left(Y_{1}, Y_{2}, Y_{3}\right) \mathrm{in}^{3} . \\
\langle V, W\rangle=X_{1} Y_{1}+X_{2} Y_{2}+X_{3} X_{3}, \tag{2}
\end{gather*}
$$

and their dot product is given by,

$$
V \times W=\left(X_{2} Y_{3}-X_{3} Y_{2}, X_{3} Y_{1}-X_{1} Y_{3}, X_{1} Y_{2}-X_{2} Y_{1}\right)
$$

The surface M may be given locally by an one-to-one isometric immersion X of a open subset U of \mathbb{R}^{2} into E^{3},

$$
\begin{array}{ccc}
X: \mathcal{U} \subset \mathbb{R}^{2} & \rightarrow & E^{3} \\
(s, v) & \mapsto & X(s, v)
\end{array} .
$$

And we can identified $\mathrm{X}(\mathrm{U})$ with U . $\mathrm{So}(s, v)$ are local coordinates on U (see [12]).On U , the Gauss map G is given by the following formulas

$$
\mathrm{G}=\frac{X_{S} \times X_{v}}{\left\|X_{s} \times X_{v}\right\|},
$$

where $\mathrm{X}_{\mathrm{s}}=\frac{\partial X}{\partial s}$ and $\mathrm{X}_{\mathrm{v}}=\frac{\partial X}{\partial v}$. The first fundamental form I and the second fundamental form II of the surface M are given in U by

$$
\left\{\begin{array}{l}
I=\left\langle X_{s}, X_{s}\right\rangle d s^{2}+2\left\langle X_{s}, X_{v}\right\rangle d s d v+\left\langle X_{v}, X_{v}\right\rangle d v^{2} \tag{5}\\
I I=\left\langle G, X_{s s}\right\rangle d s^{2}+2\left\langle G, X_{s v}\right\rangle d s d v+\left\langle G, X_{v v}\right\rangle d v^{2}
\end{array}\right.
$$

The mean curvature H of the surface is then obtained by the formulas

$$
\begin{equation*}
\mathrm{H}=\frac{\left\langle G, X_{s s}\right\rangle\left\langle X_{v}, X_{v}\right\rangle-2\left\langle G, X_{s v}\right\rangle\left\langle X_{s}, X_{v}\right\rangle+\left\langle G, X_{v v}\right\rangle\left\langle X_{s}, X_{s}\right\rangle}{\left\langle X_{s}, X_{s}\right\rangle\left\langle X_{s}, X_{s}\right\rangle-\left\langle X_{v}, X_{s}\right\rangle^{2}} \tag{6}
\end{equation*}
$$

For the Laplacian of the surface M, in local coordinates $\left(x_{1}, x_{2}\right)$ on U, we have the following formula

$$
\Delta=\frac{1}{\left[\operatorname{det}\left(g_{i j}\right)\right]^{\frac{1}{2}}} \sum_{i, j=1} \frac{\partial}{\partial x_{j}}\left\{\left[\begin{array}{c}
\operatorname{de}\left(g_{i j}\right) \tag{7}
\end{array}\right]^{\frac{1}{2}} g^{i j} \frac{\partial}{\partial x_{i}}\right\},
$$

where, $\left(g_{\mathrm{ij}}\right)$ is the matrix of the first fundamental form I of the surface.

3 - Proof of the theorem

Step 1

In this first step, we establish some formulas.
We will use the formulas (4) and (7) above to compute the Gauss map G and the Laplacian $\Delta \mathrm{G}$ of a general hilicoïd. We will consider that a general helicoids is given by an one-to-one isometric immersion X defined on the open set U of \mathbb{R}^{2} by

$$
\mathrm{X}(\mathrm{~s}, \mathrm{v})=\left(\begin{array}{c}
x(s) \cos v \\
y(s) \sin v \\
z(s)+h v
\end{array}\right), \text { where } \mathrm{x}(\mathrm{~s})>0, \mathrm{~h} \in \mathbb{R},(8)
$$

and where the profile curve $\mathrm{s} \rightarrow(\mathrm{x}(\mathrm{s}), 0, \mathrm{z}(\mathrm{s}))$ is parametrised by the arc length s , that is,

$$
\left.\begin{array}{c}
x^{\prime 2}+z^{\prime 2}=1 \tag{9}\\
(9) \\
\mathrm{X}_{\mathrm{v}}=\left(\begin{array}{c}
-x \sin v \\
x \cos v \\
h
\end{array}\right) \text {, we get the first fundamental form } \\
\mathrm{I}=\mathrm{ds}^{2}+2 h z^{\prime} \operatorname{dsdv}+\left(\mathrm{x}^{2}+\mathrm{h}^{2}\right) \mathrm{dv}^{2} ; \\
x^{\prime} \cos v \\
z^{\prime}
\end{array}\right) \text { (10) } \mathrm{sind} .
$$

and the vector

$$
\mathrm{X}_{\mathrm{s}} \times \mathrm{X}_{\mathrm{v}}=\left(\begin{array}{c}
h x^{\prime} \sin v-x z^{\prime} \cos v \\
-x z^{\prime} \sin v-h x^{\prime} \cos v \\
x x^{\prime}
\end{array}\right)
$$

Then we get from (9)

$$
\begin{aligned}
\left\|X_{S} \times X_{v}\right\|^{2} & =h^{2} x^{\prime 2}+x^{2} z^{\prime 2}+x^{2} x^{\prime 2} \\
& =h^{2} x^{\prime 2}+x^{2}\left(x^{\prime 2}+z^{\prime 2}\right) \\
& =h^{2} x^{\prime 2}+x^{2}
\end{aligned}
$$

It will be convenient to introduce the function

$$
\begin{equation*}
\delta=\left(x^{2}+h^{2} x^{\prime 2}\right)^{1 / 2} \tag{11}
\end{equation*}
$$

By using the expression of $X_{s} \times X_{v}$ given above, we get the Gauss map in the form

$$
\mathrm{G}=\left(\begin{array}{c}
A(s) \sin v-B(s) \cos v \tag{12}\\
-B(s) \sin v-A(s) \cos v \\
C(s)
\end{array}\right),
$$

where,

$$
\begin{equation*}
\mathrm{A}=\frac{h x^{\prime}}{\delta}, \mathrm{B}=\frac{x z^{\prime}}{\delta},=\mathrm{C}=\frac{x x^{\prime}}{\delta} \tag{13}
\end{equation*}
$$

satisfy

$$
\begin{equation*}
\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}=1 \tag{14}
\end{equation*}
$$

Now we use the expression of the Gauss map in (12) and the vectors

$$
\begin{gathered}
X_{s s}=\left(x \cos v, x \sin v, z^{\prime \prime}\right) ; \\
X_{s v}=\left(-x^{\prime} \sin v, x^{\prime} \cos v, 0\right) ; \\
X_{v v}=(-x \cos v,-x \sin v, 0)
\end{gathered}
$$

to obtain that,

$$
\begin{aligned}
& \left\langle\mathrm{G}, \mathrm{X}_{\mathrm{ss}}\right\rangle=-\mathrm{x}^{\prime \prime} \mathrm{B}+\mathrm{z}^{\prime \prime} \mathrm{C} \text {; } \\
& \left\langle\mathrm{G}, \mathrm{X}_{\mathrm{ss}}\right\rangle=-x^{\prime} \mathrm{A} \text {; } \\
& \left\langle\mathrm{G}, \mathrm{X}_{\mathrm{vv}}\right\rangle=\mathrm{xB} \text {. } \\
& I I=\left(-\mathrm{x}^{\prime \prime} \mathrm{B}+\mathrm{z} " \mathrm{C}\right) \mathrm{ds}^{2}-2 x^{\prime} \text { Adsdv }+\mathrm{xBdv}^{2}(15) \\
& 2 H=\frac{\mathrm{U}\left(-x^{\prime \prime} B+z^{\prime \prime} C\right)+2 \mathrm{~h} x^{\prime} z^{\prime} \mathrm{A}+\mathrm{xA}}{\delta^{2}}(16)
\end{aligned}
$$

Where,

$$
\begin{equation*}
\mathrm{U}=\mathrm{U}(\mathrm{~s})=\mathrm{x}^{2}+\mathrm{h}^{2} . \tag{17}
\end{equation*}
$$

We will get the derivate of the mean curvature in the following equation:

$$
\begin{equation*}
2 H^{\prime}=\left[\frac{\mathrm{U}\left(-\mathrm{x}^{\prime \prime} \mathrm{B}+\mathrm{z}^{\prime \prime} \mathrm{C}\right)}{\delta^{2}}\right]^{\prime}+\left[\frac{2 h \mathrm{x}^{\prime} \mathrm{z}^{\prime} \mathrm{A}+\mathrm{x} \text { B) }}{\delta^{2}}\right]^{\prime} \tag{18}
\end{equation*}
$$

Finally, it remains to find the Laplacian $\Delta \mathrm{G}$ of the Gauss map G. Since the matrix $\left(\mathrm{g}_{\mathrm{ij}}\right)$ of the first fundamental form I is

$$
\left(\mathrm{g}_{\mathrm{ij}}\right)=\left(\begin{array}{cc}
1 & h z^{\prime} \\
h z^{\prime} & U
\end{array}\right),
$$

Then its inverse is

$$
\left(\mathrm{g}^{\mathrm{ij}}\right)=\frac{1}{\delta^{2}} \cdot\left(\begin{array}{cc}
U & -h z^{\prime} \\
-h z^{\prime} & 1
\end{array}\right) .
$$

Thus

$$
\delta \Delta=\frac{\partial}{\partial s}\left[\delta\left(\left(\frac{U}{\delta^{2}}\right) \frac{\partial}{\partial s}-\left(\frac{h z \prime}{\delta^{2}}\right) \frac{\partial}{\partial v}\right)\right]+\frac{\partial}{\partial v}\left[\delta\left(-\left(\frac{h z \prime}{\delta^{2}}\right) \frac{\partial}{\delta^{2}}+\frac{1}{\delta^{2}} \frac{\partial}{\partial v}\right)\right]
$$

By (7)

So, we get easily that

$$
\delta \Delta \mathrm{G}=\left(\frac{\mathrm{U}}{\delta}\right)^{\prime} \mathrm{G}_{\mathrm{s}}+\left(\frac{\mathrm{U}}{\delta}\right) \mathrm{G}_{\mathrm{ss}}-\left(\frac{h z}{\delta}\right)^{\prime} \mathrm{G}_{\mathrm{v}}-2\left(\frac{h z}{\delta}\right) \mathrm{G}_{\mathrm{sv}}+\left(\frac{1}{\delta}\right) \mathrm{C}_{\mathrm{vv}}(19)
$$

To obtain $\delta \Delta \mathrm{G}$, we will need the following six vectors,

$$
\mathrm{G}=\left(\begin{array}{c}
A \sin v-B \cos v \\
-B \sin v-A \cos v \\
C
\end{array}\right)
$$

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{s}}=\binom{A^{\prime} \sin v-B^{\prime} \cos v}{-B^{\prime} \sin v-A^{\prime} \cos v} \\
& C^{\prime} \\
& \mathrm{G}_{\mathrm{v}}=\binom{B \sin v+A \cos v}{-A \sin v-B \cos v} \\
& 0 \\
& \mathrm{G}_{\mathrm{sv}}=\left(\begin{array}{c}
B^{\prime} \sin v+A^{\prime} \cos v \\
A^{\prime} \sin v-B^{\prime} \cos v \\
0
\end{array}\right) \\
& \mathrm{G}_{\mathrm{ss}}=\left(\begin{array}{c}
A^{\prime \prime} \sin v-B^{\prime \prime} \cos v \\
B^{\prime \prime} \sin v-A^{\prime \prime} \cos v \\
C^{\prime \prime}
\end{array}\right) \\
& \mathrm{G}_{\mathrm{vv}}=\left(\begin{array}{c}
-A \sin v-B \cos v \\
B \sin v-A \cos v \\
C
\end{array}\right)
\end{aligned}
$$

So we can see that

$$
\delta \Delta \mathrm{G}=\mathrm{G}_{\mathrm{v}}=\left(\begin{array}{c}
\alpha(s) \sin v-\beta \cos v \tag{20}\\
-\beta \sin v-\alpha \cos v \\
\gamma(s)
\end{array}\right)
$$

Where α, β and γ are given by

$$
\left\{\begin{array}{l}
\alpha=\left(\frac{U}{\delta}\right)^{\prime} A^{\prime}-\left(\frac{h z^{\prime}}{\delta}\right)^{\prime} B-2\left(\frac{h z}{\delta}\right) B^{\prime}+\left(\frac{U}{\delta}\right) \quad A^{\prime}-\left(\frac{1}{\delta}\right) A \tag{21}\\
\beta=\left(\frac{U}{\delta}\right)^{\prime} B^{\prime}-\left(\frac{h z}{\delta}\right)^{\prime} A+2\left(\frac{h z}{\delta}\right) A^{\prime}+\left(\frac{U}{\delta}\right) \quad B^{\prime}-\left(\frac{1}{\delta}\right) B \\
\gamma=\left(\frac{U}{\delta}\right)^{\prime} C^{\prime}+\left(\frac{U}{\delta}\right) C^{\prime \prime}
\end{array}\right.
$$

These relations can be rewritten as

$$
\left\{\begin{array}{c}
\alpha=\left[\left(\frac{U}{\delta}\right) A^{\prime}\right]^{\prime}-\left(\frac{h z^{\prime}}{\delta}\right)^{\prime} B-2\left(\frac{h z^{\prime}}{\delta}\right) B^{\prime}-\left(\frac{1}{\delta}\right) A \tag{22}\\
\beta=\left[\left(\frac{U}{\delta}\right) B^{\prime}\right]^{\prime}+\left(\frac{h z^{\prime}}{\delta}\right)^{\prime} A+2\left(\frac{h z^{\prime}}{\delta}\right) A^{\prime}+\left(\frac{1}{\delta}\right) B \\
\gamma=\left[\left(\frac{U}{\delta}\right) C^{\prime}\right]^{\prime}
\end{array}\right.
$$

Remarque 3.1. From the expression of $\delta \Delta G$ given in (20) and that of the Gauss map G in (12), we get that

$$
\begin{equation*}
\delta \Delta \mathrm{G}, \mathrm{G})=\alpha \mathrm{A}+\beta \mathrm{B}+\gamma \mathrm{C} . \tag{23}
\end{equation*}
$$

Which becomes?

$$
\left\{\begin{array}{l}
\alpha=(\alpha \mathrm{A}+\beta \mathrm{B}+\gamma \mathrm{C}) \mathrm{A} \tag{24}\\
\beta=(\alpha \mathrm{A}+\beta \mathrm{B}+\gamma \mathrm{C}) \mathrm{B} \\
\gamma=(\alpha \mathrm{A}+\beta \mathrm{B}+\gamma \mathrm{C}) \mathrm{C}
\end{array}\right.
$$

Step 3

Here we make some remarks for solving the equations in (24).

Since $\mathrm{A}=\frac{h x x^{\prime}}{\delta}$, we first assume that $\mathrm{x}^{\prime}=0$ and $\mathrm{h} \neq 0$. In this case, the surface is right helicoids. Indeed we have $\mathrm{x}=\mathrm{x}_{\mathrm{o}}$ a positive number, $\mathrm{z}=1$ or $\mathrm{z}=-1, \mathrm{~A}=\mathrm{C}=0$, and $\mathrm{B}= \pm 1$.
The right helicoid is a minimal surface, that is, a surface of constant mean curvature zero. If $h=0$, the surface becomes a rotation surface and the problem is solved in [5]. In the remaining parts we will assume that h is not zero and x ' is never zero.

Step 4

In this last step, we may assume that $\mathrm{A}=\mathrm{A}(\mathrm{s})=\frac{h x \prime}{\delta}$ is a non vanishing function on some interval of the real line (by step 3).
a).First, we are going to prove that the condition (24) is equivalent to the two following equations:

$$
\begin{equation*}
\beta \mathrm{A}=\alpha \mathrm{B} ; \gamma \mathrm{A}=\alpha \mathrm{C} \tag{25}
\end{equation*}
$$

From (24), we have $\alpha=\lambda A, \beta=\lambda B, \gamma=\lambda C$, where, $\lambda=\alpha A+\beta B+\gamma C$.
Then (25) is easily obtained.

Conversely, assume (25) is true. The equation $\beta \mathrm{A}=\alpha \mathrm{B}$ implies $\alpha=\lambda \mathrm{A}$ and $\beta=\lambda \mathrm{B}$, for some function $\lambda=\lambda(\mathrm{s})$.

But, since A is never zero, we have $\lambda=\frac{\alpha}{A}$. Then, the second equation in (25) becomes, $\gamma=\lambda \mathrm{C}$. So we have $\alpha=\lambda A, \beta=\lambda B, \gamma=\lambda C$. Since $A^{2}+B^{2}+C^{2}=1$

Then $\lambda=\alpha \mathrm{A}+\beta \mathrm{B}+\gamma \mathrm{C}$. So (24) implies (25). Finally, (24) is equivalent to (25).
b).If $\beta \mathrm{A}=\alpha \mathrm{B}$, then H is constant

Using (22), $\beta \mathrm{A}=\alpha \mathrm{B}$ is equivalent to

$$
\begin{gathered}
{\left[\left(\frac{U}{\delta}\right) B^{\prime}\right]^{\prime} A\left(\frac{U}{\delta}\right) A^{\prime} B+\left(\frac{h z^{\prime}}{\delta}\right)^{\prime}\left(\mathrm{A}^{2}+\mathrm{B}^{2}\right)+\left(\frac{2 h z}{\delta}\right)\left(A A^{\prime}+B B^{\prime}\right)=0} \\
\mathrm{~T}_{1}+\mathrm{T}_{2}=0
\end{gathered}
$$

We can put equation (26), in the form
Where $\mathrm{T} 1=\left[\frac{U}{\delta}\left(B^{\prime} A-A^{\prime} B\right)\right]^{\prime}, \mathrm{T}_{2}=\left[\frac{h z^{\prime}}{\delta}\left(A^{2}+B^{2}\right)\right]^{\prime}$ using the fact
$\left(B^{\prime} A-A^{\prime} B^{\prime}\right)^{\prime}=B^{\prime \prime} A-A^{\prime \prime}$.

From the equation (13), we get:

$$
A^{\prime}=h \frac{x^{\prime \prime} \delta-x^{\prime \prime} \delta^{\prime}}{\delta^{2}}
$$

And

$$
B^{\prime}=\frac{x^{\prime \prime} z^{\prime} \delta+x z^{\prime \prime} \delta-x z^{\prime} \delta^{\prime}}{\delta^{2}}
$$

Then

$$
B^{\prime} A=A^{\prime} B=\frac{h}{\delta^{3}}\left\{x^{\prime 2} z^{\prime} \delta+x x^{\prime} z^{\prime \prime} \delta-x x^{\prime} z^{\prime} \delta^{\prime}+x x^{\prime} z^{\prime} \delta^{\prime}\right\}
$$

$$
\begin{aligned}
& =\frac{h}{\delta^{2}}\left\{x^{\prime 2} z^{\prime}+\left(x x^{\prime}\right) z^{\prime \prime} \delta-\left(x z^{\prime}\right) x^{\prime \prime}\right\} \\
& =\frac{h}{\delta^{2}}\left[C z^{\prime \prime}-B x^{\prime \prime}\right]+\frac{h x^{\prime} Z^{\prime}}{\delta^{2}} \text { by }(13)
\end{aligned}
$$

Bearling in mind that $\mathrm{T} 1=\left[\frac{U}{\delta}\left(B^{\prime} A-A^{\prime} B\right)\right]^{\prime}$, we have

$$
\mathrm{T}_{1}=\mathrm{h}\left[\frac{U}{\delta^{2}}\left(C z^{\prime \prime}-B x^{\prime \prime}\right)+\frac{x^{\prime 2} z^{\prime} U}{\delta^{3}}\right]
$$

So, the relation $\mathrm{T}_{1}+\mathrm{T}_{2}=0$ becomes

$$
\left[\frac{U}{\delta^{2}}\left(C z^{\prime \prime}-B x x^{\prime \prime}\right)+\frac{x^{\prime 2} z^{\prime} U}{\delta^{3}}\right]^{\prime}+\left[\frac{x^{\prime 2} z^{\prime} U}{\delta^{3}}=\frac{z^{\prime}}{\delta}\left(A^{2}+B^{2}\right)\right]^{\prime}=0
$$

Now it remains to compare this equation, with the equation (18) which can be written as

$$
\left[\frac{U}{\delta^{2}}\left(C z^{\prime \prime}-B x^{\prime \prime}\right)\right]^{\prime}=2 H^{\prime}-\left[\frac{2 h x^{\prime} z^{\prime} A+x B}{\delta^{2}}\right]^{\prime}
$$

We get easily that $T_{1}+T_{2}=0$ becomes

$$
2 H^{\prime}-\left[\frac{2 h x^{\prime} z^{\prime} A+x B}{\delta^{2}}\right]^{\prime}+\left[\frac{x^{2} y^{\prime} U}{\delta^{3}}+\frac{z^{\prime}}{\delta}\left(A^{2}+B^{2}\right]^{\prime}=0\right.
$$

That is $2 H^{\prime}+\mathrm{T}=0$, where

$$
\mathrm{T}=\left[\frac{2 h x^{\prime} z^{\prime} A+x B}{\delta^{2}}\right]^{\prime}+\left[\frac{x^{\prime 2} z^{\prime} U}{\delta^{3}}+\frac{z^{\prime}}{\delta}\left(A^{2}+B^{2}\right)\right]^{\prime}
$$

Now let us show that T is zero.
Since $\mathrm{A}=\frac{x x \prime}{\delta}, \mathrm{~B}=\frac{x z \prime}{\delta}, \mathrm{U}=\mathrm{x}^{2}+\mathrm{h}^{2}$, we have:

$$
\mathrm{T}=\left[\frac{z^{\prime}}{\delta^{3}}\left(-2 h^{2} x^{\prime 2}-x^{2}+x^{\prime 2}\left(x^{2}+h^{2}\right)+h^{2} x^{\prime 2}+x^{2} z^{\prime 2}\right)\right]^{\prime}
$$

Finally, by using the fact that $z^{\prime 2}=1-x^{\prime 2}$, we see that

$$
\mathrm{T}=\left[\frac{z^{\prime}}{\delta^{3}}\left(-x+x^{\prime 2} x^{2}+x^{2}\left(1-x^{\prime 2}\right)\right]^{\prime}=0\right.
$$

Hence, the theorem is proved.

References

[1] Chen B.Y., On submanifolds of finite type, Soochow J. Maths. 9 (1987), $65-81$.
[2] Chen B. Y., Total Mean Curvature and Submanifolds of finite type, World Scientic, Singapore, 1984.
[3] Kim Y. H., Yoon D.W., Ruled surfaces with pointwise 1 - type Gauss map, J. Geom. Phys. 34 (2000), 191 - 205.
[4] Choi M. K., Kim Y.H., Characterization of the helicoids as ruled surface with pointwise 1 - type Gauss map, Bull. Korean Math Soc. 38 (2001); No 4.
[5] Alias L. J., Ferranandez, Lucas P., and Meron̂no M.A., On the Gauss map of B - scrolls, Tsukuba J. Maths. 22 (1998), 317 - 377.
[6] Choi S.M., On the Gauss map of ruled surfaces in a three - dimensional Minkowski space, Tsukuba J. Maths. 19 (1995), 285 - 304.
[7] Chen B.Y., Total Mean Curvature and Submanifolds with finite 1 - type Gaus map. Bull. Austral. Math. Soc. 35 (1987), 161-180.
[8] Niang A., Rotation surface surfaces with pointwise 1 - type Gauss map, Bull. Korean Math. Soc. 42 (2005) No 1, 23 - 27.
[9] Niang A., On the rotation surfaces in the Minkowski 3 - dimensional space with pointwise 1 - type Gauss map. J. Korean Math. Soc. 41 (2004). No. 6, 1007 - 1021.
[10] Kenmotsu K., Surfaces with constant mean curvature, Translations of Mathematical Monographs, 221. American Mathematical Society, Providence, RI, (2003), 71, Lemma 5.4.
[11] T. Weinstein, An introduction to Lorenz surface, Walter de Gruyer, Berlin, New - York (1996), pp 150, pp 162-163, pp 153-156.

[^0]: ${ }^{1}$ Département de Mathématiques et Informatique, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Sénégal. Email : aniang@ucad.sn

