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GENERAL HELICOIDS WITH POINTWISE 
1 – TYPE GAUSS MAP 
 
Athoumane Niang1 

 
Abstract 
It is well known that the Gauss map of a constant mean curvature surface is point wise 1-type. 
In this paper, we show that if the Gauss map of general helicoids is pointwise 1 – type then, 
it’s mean curvature is a constant. 
 
Keywords and Phrases : hypersurface, mean curvature, Gauss map 
 
Résumé. On montre  que si le laplacien de l’application de Gauss d’un hélicoide lui est 
proportionnel alors sa courbure moyenne est constante. 
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1 - Introduction 
In the framework of the theory of finite type submanifolds (see [1], [2]), the authors of [3] 
raise the following problem. 
 
Classify all submanifolds in m – Euclidean space Em (or in ��� ) satisfying the following 
equation ∆G = fG (1) 
 
Where ∆ is the Laplacian of the induced metric, G the Gauss map of the map of the 
submanifold, and for some function f on the submanifold. 
 
Definition 1.1. The Gauss map of an hypersurface is said to be pointwise 1 – type if the 
condition (1) is satisfied. 
 
The authors of [3] have classified ruled surfaces in the Minkowski 3 –space ��� with 
pointwise  
 
1 – Type Gauss map. 
In the paper [4], a characterization of the helicoids as ruled surface in the Euclidean 3 – space 
with pointwise 1 – type Gauss map is obtained. 
 
On the other hand, some classes of submanifolds in the pseudo-Euclidean space with finite 
Gauss map are studied in [5] and [6]. Choi and Piccini in [7] made a general study on 
submanifolds of Euclidian spaces with finite type Gauss map and classified the compact 
surfaces with 1 – type Gaus map. 
 
In the papers [8] and [9], respectively, the rotation surfaces in the Euclidean space E3 and 
rotation surfaces in the Minkowski space ��� with pointwise 1 – type Gauss map have been 
studied and a characterization theorem of them is obtained. In this paper, we generalize the 
characterization for the class of general helicoids. Let us recall the following. a kinetic 
property of a rotation surface is its invariance by a rotation around its axis. Such a property is 
satisfied by cylinders and by the wide class of the general helicoids which contains the 
cylinders and the rotation surfaces as limit cases. 
 
It is well-known that the Gauss map of a constant mean curvature surface is pointwise 1-type 
([6]). 
 
On main result is : 
 
Theorem 1.2. If the Gauss map of a general helicoids in the Euclidean 3 – space is pointwise 
1 – type, then its mean curvature is a constant. 
 
In this paper, we will assume that all surfaces are connected and all objects are at least of class 
C3. We will use freely the notation of vectors by columns or by lines. 
 
2 - Preliminaries 
Here, we recall some fundamental formulas for surfaces to be used later in this work. Assume 
that M is a surface in the Euclidean 3 – dimensional space E3 with it’s canonical metric 
denoted by 〈 ., . 〉.  
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For two vectors V = (X1, X2, X3) and  

W = (Y1, Y2, Y3) in E3. 

〈 V, W 〉 = X1 Y1 + X2 Y2 + X3 X3 , (2) 

 

and their dot product is given by, 

V×W = (X2 Y3 – X3 Y2, X3Y1 – X1 Y3, X1 Y2 – X2 Y1). (3) 

 
The surface M may be given locally by an one-to-one isometric immersion X of a open subset 

U of ℝ2 into E3,  
 
 � ∶ 	� ⊂ ℝ� ⟶ ��(�, �) ⟼ �(�, �) . 

 
 
And we can identified X(U) with U. So (s, v) are local coordinates on U (see [12]).On U, the 

Gauss map G is given by the following formulas 

 

G = 
��	×	��∥��	×	��∥	,	(4) 

 

where Xs = 
����  and Xv = 

���� . The first fundamental form I and the second fundamental form II 

of the surface M are given in U by 
 
 �� = 	 〈��, ��〉	 �� + 	2〈��, ��〉	 �	 � +	 〈��, ��〉	 ��,�� = 	 〈#, 	���〉	 �� + 	2〈#, ���〉	 � � +	〈#, ���〉	 �� $  (5) 

 

The mean curvature H of the surface is then obtained by the formulas 

H = 〈#, ���〉〈��, ��〉 	− 2〈#, ���〉〈��, ��〉 +	〈#, ���〉〈��, ��〉〈��, ��〉	〈��, ��〉	–	〈��, ��〉2 			(6)	 
 

For the Laplacian of the surface M, in local coordinates (x1, x2) on U, we have the following 
formula 

∆ = 
�

'()*	(+,-)./0 	∑ ��2-3,45� 67 det	(;34)<
/0 	;34 	 ��2,=	, (7) 

 

where, (gij) is the matrix of the first fundamental form I of the surface. 
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3 - Proof of the theorem 
Step 1 
In this first step, we establish some formulas. 
We will use the formulas (4) and (7) above to compute the Gauss map G and the Laplacian 
∆G of a general hilicoïd. We will consider that a general helicoids is given by an one-to-one 

isometric immersion X defined on the open set U of ℝ
2 by 

 

X(s, v) = >?(�)	@A�	�B(�) sin �F(�) + 	ℎ�H , where x(s) > 0 , h ∈ ℝ , ( 8) 

and where the profile curve s → (x(s), 0, z(s)) is parametrised by the arc length s, that is,  	?′� + F′� = 1   (9) 

(see [5]). From Xs = = I?′	@A�	�? ′ 	sin �F′ J and 

Xv = I−	?	�KL	�?	 cos �ℎ J, we get the first fundamental form 

I = ds2 + 2ℎF ′ dsdv + (x2 + h2) dv2; (10) 

and the vector 

Xs × Xv = I ℎ? ′ sin � − ?F ′ cos �−?F ′ sin � − ℎ? ′ cos �??′ J . 

Then we get from (9) ‖�� × ��‖� = ℎ�? ′� + ?�F ′� + ?�? ′�,= ℎ�? ′� + ?�(? ′� + F ′�),= ℎ�? ′� + ?�.  

It will be convenient to introduce the function 

δ	= 	 Q?� + ℎ�?′�R� �S  . (11) 

By using the expression of Xs × Xv given above, we get the Gauss map in the form 

G = > T(�) sin � − U(�)	 @A�	�−	U(�) sin � − T(�) cos �V(�) H , (12) 

where, 

A =	W2′X  , B = 
2Y′X 	 , = 	C = 

22′X       (13) 

satisfy 

A2 + B2 + C2 = 1.  (14) 
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Now we use the expression of the Gauss map in (12) and the vectors ��� = (? cos �, ? sin �, F ′′)	;	��� = (−? ′ sin �, ?′ cos �, 0)	;��� = (−? cos �,−? sin �, 0)	;	 
to obtain that, 〈G, Xss〉 = -x'' B + z'' C ;〈G, Xss〉 = -?′ A ;〈G, Xvv〉 = x B.

 

II  = (- x” B + z” C) ds2 – 2?′ Adsdv + xBdv2 (15) 

2H = 
UQ\2]]^_Y]]`R + 2h2′Y′A + xA

δ
2  (16) 

Where, 

U = U(s) = x2 + h2. (17) 

 

We will get the derivate of the mean curvature in the following equation: 

2a′ = bU(-x''	B + z'' C)

δ
2 cd		+ b2hx' z' A + x	B)

δ
2 c' (18) 

 
Finally, it remains to find the Laplacian ∆G of the Gauss map G. Since the matrix (gij) of the 
first fundamental form I is 

(gij) =e 1 ℎF′ℎF′ g h, 
Then its inverse is  

(gij) = 
1

δ
2.e g −ℎF′−ℎF′ 1 h. 

Thus 

i∆	= 	 ��� bi kelX0h	 ��� −	eWYdX0 h	 ���mc + ��� bi e−	eWYdX0 h �X0	+ �X0 	 ���hc 
By (7) 

 

So, we get easily that 

δ∆G = 	ep
δ
hd 	Gq + eprh	Gqq −	eWY′r hd 	Gs − 	2	 eWY′r h	Gqs +	e�rh	Css (19) 

 

To obtain δ∆G, we will need the following six vectors, 

G = I T sin � − U cos �−	U sin � − T cos �V J 
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Gs = I T′ sin � − U′ cos �−	U′ sin � − T′ cos �V′ J 

Gv = I U sin � + 	T cos �−	T sin � − U cos �0 J 

Gsv = IU′ sin � +	T′ cos �T′ sin � − U′ cos �0 J 

Gss = IT′′ sin � − 	U′′ cos �U′′ sin � − T′′ cos �V′′ J 

Gvv = I−T	 sin � − U cos �U sin � − T cos �V J 

So we can see that 

δ∆G = Gv = >u(�)	sin � − 	v cos �−	v sin � − u cos �w(�) H, (20) 

Whereα, β and γ are given by 
 

xy
z
y{u = 	elXh′ 	T′ −	eWY′X h′ U − 2	 eWY′X hU′ +	elXh T′′ −	e�Xh T	;
β =	elXh′ 	U′ −	eWY′X h′ T + 2	 eWY′X hT′ +	elXh U′′ −	e�XhU	;

γ =	elXh′ 	V ′ +	elXh	V ′′																																			
$   (21) 

 
These relations can be rewritten as 
 

xyz
y{u = 	 belXhT′c′ −	eWY′X h′U − 2	 eWY′X h U′−	e�Xh T	;								
β =	 belXhU′c′ +	eWY′X h′ T + 2	 eWY′X hT′ +		 	 e�XhU	;							

γ =	 belXh V′c′																																											
$(22) 

 
Remarque 3.1. From the expression of δ∆G given in (20) and that of the Gauss map G in 
(12), we get that 

δ∆G, G) = α A + β B + γ C. (23) 
 
Which becomes? 









++=
++=
++=

 . C  C)   B   A (  

,  B C)   B   A (

,  A C)   B   A (  

γβαγ

γβαβ

γβαα

 (24) 

 
Step 3 
Here we make some remarks for solving the equations in (24). 
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Since A = 
W2dX , we first assume that x’ = 0 and h ≠ 0. In this case, the surface is right helicoids. 

Indeed we have x = xo a positive number, z = 1 or z = -1, A= C = 0, and B = ± 1. 
The right helicoid is a minimal surface, that is, a surface of constant mean curvature zero. 
If h = 0, the surface becomes a rotation surface and the problem is solved in [5]. In the 
remaining parts we will assume that h is not zero and x’ is never zero. 
 
Step 4 
In this last step, we may assume that A = A(s) = 

W2dX  is a non vanishing function on some 

interval of the real line (by step 3). 
 
a).First, we are going to prove that the condition (24) is equivalent to the two following 
equations: 

β A = α B; γ A = α C (25) 
 
From (24), we have α = λ A, β = λ B,  γ = λ C, where, λ = α A + β B + γ C. 

Then (25) is easily obtained. 

 
Conversely, assume (25) is true. The equation β A = α B implies α = λ A and β = λ B, for 
some function λ = λ(s). 
 
But, since A is never zero, we have λ =

|}. Then, the second equation in (25) becomes, γ = λ C. 

So we have α = λ A, β = λ B, γ = λ C. Since A2 + B2 + C2 = 1 
 
Then λ = α A + β B + γ C. So (24) implies (25). Finally, (24) is equivalent to (25). 
 
b).If βA = α B, then H is constant 
Using (22), β A = α B is equivalent to 
 	be	lXh	U′c′ 	T	 elXh	T′	U +	eWY′X h′(A2 + B2) + e�WY′X h (TT′ + 	UU′) = 0			(26) 

T1 + T2 = 0, 

We can put equation (26), in the form 

Where T1 =	blX (U′T − T′U)c′ , T2 = 	bWY]X (T� + U�)cd using the fact  

(U′T − T′U′)′ = U′′	T − T′′	. 
 
From the equation (13), we get: T′ = h 

2′′X	–	2′′X′X0  

And U′ = 
2]]Y]X	_2	Y]]X\2	Y]X]X0  

Then U′T = T′U = 	 ℎi� 	�?′�	F ′i + ?	? ′F ′′i − ?	? ′F ′i ′ + 	?	? ′F′i′� 
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= 
WX0 	�?′�	F′	 + (??′)	F′′i − (?	F′)	?′′� 

= 
WX0 	 �V	Fdd − 	U	?′′� +	W2d0YdX0 	by (13) 

Bearling in mind that T1 = blX 	(U′T − T′U)c′, we have 

T1 = h 7lX0 	(V	F ′′ − 	U	? ′′) +	2′	0Y′lX� <′. 
So, the relation T1 + T2 = 0 becomes 

7lX0 	(V	F ′′ − 	U	? ′′) +	2′	0Y ′lX� <′ + 72′0	Y′lX� =	 Y ′X 	(T� +	U�)<′ = 0. 
Now it remains to compare this equation, with the equation (18) which can be written as 

b lX0 	(V	F ′′ − 	U	? ′′)c′ = 2a′ −	b�W2′Y ′}	_	2	^X0 c′ 
We get easily that T1 + T2 = 0 becomes 

2a′ - b�W2′Y ′}_2	^	X0 	c′ +	b2′0	�′lX� +	Y′X 	(T� +	U�c′ = 0 

That is 2a′ + T = 0, where 

T = b�W2′Y ′}	_	2	^X0 c′ + b2′0Y′lX� +	 Y ′X (T� +	U�)c′ 
Now let us show that T is zero. 

Since A = 
22dX  , B = 

2YdX  , U = x2 + h2, we have: 

T = b Y ′X� e−2ℎ�	? ′� −	?� + ? ′�	(?� +	ℎ�) + ℎ�	? ′� + ?�	F ′�hc′ 
Finally, by using the fact that F′� = 1 –	?′�, we see that 

T = b Y ′X� e−	? + ? ′�	?� +	?�	(1 − ?′�hc′ = 0 

Hence, the theorem is proved. 
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