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CHARACTERIZATION OF HOLO-
MORPHICALLY FILLABLE
CONTACT STRUCTURES ON
SOME T?— BUNDLES OVER &

Hamidou DATHE, Cheikh KHOULE

Abstract.
In this notes we give An estimation up to isotofythee number of holomorphically fillable

contact structures on“Tbundle over § with non-periodic monodromy matrix B SL, (2)
satisfying|jtr A| = 2.
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Résumé.

Dans cet article on donne une estimation, a isetppés, du nombre de structures de contact
holomorphiquement remplissables sur les fibresoeestT sur le cercle Sdont la matrice de
monodromie est de trace en valeur absolue égale a 2

O-Introduction
The main Theorem in this paper is the following.

Theorem0.0.1 Let Mbea T?- bundle over Swith non-periodic monodromy matrix & SL,
(2) satisfyingltr A| = 2 andHFy, the number up to isotopy of holomorphically fillalzontact
structures oM. Then we have £ HFy < 3.

Before proving the main Theorem 0.0.1 in sectiow@recall in section 1, general notions of
contact structures, most of them are taken in gapeed in reference.

In section 2, we discuss tightness and fillabibfya contact structure. As an application we
recall the result of Y. Eliashberg ([4]), which edsthat there exist a unique holomorphically
fillable contact structure on the 3-torus with therticularity that here the explicit filling is
given.

So the result of this paper can be seen as ansésieof the result of Y. Eliashberg in ([4]) to
all T?- bundle over Swith non-periodic monodromy matrix B SL, (Z) satisfying|tr A|= 2.
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2 - Contact manifolds

,Characterization of holomorphically

a, hence one can speak abopositive

We recommend as a general reference on contact structures

contact geometry Geiges' recent textbook

([9D.

Let M be a differential manifold ang [
TM a hyper plane fields on M. Locally
can always be written as the kernel of a
non-vanishing 1-formo. One way to see
this is to choose an auxiliary Riemannian
metric gon M and then to define = g(X,

.), where Xis a local non-zero section of
the line bundle £~ (the orthogonal
complement off in TM). We see that the
existence of a globally defined 1-foron
with &= Ker a is equivalent to the
orientability (hence triviality) of", i.e. the
coorientability of &. In this paper, the
manifold M will be assumed to be oriented
and all the plane fields supposed to be
coorientable.

If a satisfies the Frobenius integrability
condition a [ da 0, then ¢ is an
integrable hyper plane field (and vice
versa), and its integral submanifolds form a
codimension 1 foliation of M. And an
integrable hyper plane field is locally of the
form dp 0, where p is a coordinate
function on M.

The following listed 1-forms are contact
forms and the verification is left to the
reader.

Example 1.1.2 on R™! with Cartesian
coordinates (X Yi.---, %, Yn, Z), the 1-form
o =dz + 3" =1 % dyiis a contact form.

Example 1.1.3 on R™ with polar
coordinates (f; §) for the (X, y;)-plane,

j=1,....,n, the 1-formoy = dz +X"j=; 1;dg; =
dz +X" =1 (x dy; - y; dx) is a contact form.

Example 1.1.4on the sphere®&™, say S

On has a contact forn by restricting on
S the 1-formayon R, with coordinates

Yo, X1, Y1) defined as follow:

ah = Xodyo - YodXo + X1dy1 - yrdxs.

Let us discuss now the problem of
classification of contact structures. As in
any problem of classification, one has to
decide first which objects are considered
equivalent. A particular case of homotopy
is obtained by changing the structure using
a path of isomorphisms of the underlying
fixed space, in which case one speaks about
isotopy. Let us be more formal for the case

Contact structures are in a certain sense theof contact structures.

exact opposite of integrable hyper plane
fields.

1.1 Basic notions

Definition 1.1.1 Let M be a (2n+1)-
dimensional manifold. Aontact structure
on M is a hyper plane distributiodin TM
given by a global 1-fornr such thata 7/
(da)" vanishes nowhere. We say that the
pair (M, ¢) is acontact manifoldand that

a is a contact form The forma is called
positive if a /7 (da) " defines the chosen
orientation of M. If n is odd, then the
orientation defined byr /7(da) " does not
depend on the choice of the defining form

Definition 1.1.5 Two contact manifolds
My, &) and (M, &) are called
contactomorphic if  there is
diffeomorphism f: M — M, with (&) =
&, where f: TMy — TM, denotes the
differential of f. If§ = Ker a;, i = 1, 2, this

is equivalent to the existence of a nhowhere
zero function : M; — R such thatfa, =
AO’]_.

a

Example 1.1.6 the contact manifolds
(R & = Ker a, i = 1, 2) from the
preceding examples are contactomorpt
An explicit contactomorphism f withd:

= misgivenby: f(x;y; z2) =[(x+y)/ 2, (
-X)/2,z+xy/2], where x and y stand -
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(X1, ... , %) and (\, ... , W), respectively,

and x y stands fad; x y;.

Similarly, both these contact structures are
contactomorphic to Ker (dz 3j % y;). Any

of these contact structures is called the
standard contact structuren R™,

Definition 1.1.7 A homotopybetween two
contact structures is a smooth path of
contact structures connecting them.

An isotopy between two contact structures
is a homotopy of the forng(&),, where ();

is a smooth path of self-diffeomorphisms of
M.

Two contact structureg and & on M are
homotopig resp.isotopic resp.isomorphic
if there is a homotopy, resp. an isotopy,
resp. a contactomorphic of M which sends

foné .

One wusually tries to classify contact
structures on a given manifold up to isotopy
or up to contactomorphism. Any contact

Definition 1.1.9 Associated with a contact
form a one has the so-called Reeb vector
field R,, defined by the equations:

() da(Rs.)=0

(i) a(Rq) =1.

Then any dynamical invariants of the Reeb
vector field are invariants of the contact
form, which makes one, feel that by
deforming a form, the global structure may
change drastically. When one keeps instead
of the whole contact form only the contact
structure defined by a contact form, the
situation is completely different.

Theorem 1.1.10 (Gray [14]) two
homotopic contact structures on a closed
manifold are isotopic.

1.2 Contact structures and Sasakian
metrics

Definition 1.2.1 An almost contact
structure on a differentiable manifolds M is
a triple (Z, 5, @), where® is a tensor field
of type (1, 1) (i.e. an endomorphism of TM),
Z is a vector field, andr is a 1-form which

structure may be seen as a hyper plane satisfyn(z) = 1 and®@ o @ =- /+ Z0n,
field, but one has to be careful because a here / is the identity endomorphism on

homotopy between the underlying hyper
plane fields of two contact structures is not
necessarily a homotopy of contact
structures.

Again, a general problem of classification
of structures splits into a local and into a
global one. Like complex structures and
foliations, contact forms have no local
invariants:

Theorem 1.1.8 (Darboux) Any contact
form may be written in suitable local
coordinates as the standard contact
structure on B,

Globally the situation is distinct, due to the

fact that there is a canonical vector field
attached to any contact form.
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TM. A smooth manifold with such a
structure is called analmost contact
manifold.

We have seen that contact geometry exists
only in odd dimensions. But it interacts
very deeply with an even-dimensional
geometry, namely symplectic geometry.

Definition 1.2.2 A symplectic formon an
even-dimensional vector space is a non-
degenerate exterior form of degree 2. A
symplectic formon an even-dimensional
manifold is a closed non-degenerate smooth
form of degree 2. Aymplectic manifolds

a manifold endowed with a symplectic form.

Let (M, a) be a contact manifold with a
contact 1-formo and consideg = Kera [
TM. The subbundl€f is maximally non-
integrable and it is called the contact
distribution. As a first example of the
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presence of symplectic structures in the
contact world, note that part of Definition
1.1.1 may be rephrased as saying that a
contact form if and only if d is a
symplectic form in restriction to Kar An
equivalent formulation of the contact
condition is that the pair§( dals) gives¢
the structure of a symplectic vector bundle.
We denote by 4] the space of all almost
complex structures Jon ¢ that are
compatible with d|s, that is the subspace of
smooth sections df the endomorphism
bundle Endf) that satisfy:

J2

-, da(IX, JY ) = ai(X, Y),
da(X; IX)>0 (1)

for any smooth sections X, Y @f
Notice that each JO JE€) defines a
Riemannian metricsgon & by setting:

g:(X, Y) =da(X, JY). (2)

One easily checks thatg gsatisfies the
compatibility condition g (JX, JY) = q (X,

Y). Furthermore, the map 3 g is one-to-
one, and the space&J(is contractible. A
choice of J gives Min almost CR structure.

Moreover, by extending J to all of Tehe
obtains an almost contact structure. There
are some choices of conventions to make
here. We define the sectigh of End(TM)

by ® = J on§ and®R,= 0, where Ris the
Reeb vector field associated ¢to We can
also extend the transverse metrictg a
metric gon all of Mby

9(X, Y) = &(X, Y) + a(X) a(Y) = da(X,
®Y) +a(X) a(y), (3)

for all vector fields X, Y on M. One easily
also sees that gatisfies the compatibility
condition g(PX, ®Y) = g(X, Y) - a(X)
a(y).

Definition 1.2.3 A contact manifold M with
a contact forma, a vector field R a

,Characterization of holomorphically

section @ of End(TM), and a Riemannian
metric g which satisfy the conditions

aRy)=1land@o@®=-/+R,[7a,
is known as &ontact metricon M.

Definition 1.2.4 A contact metric manifold
(M, a) is called aSasakianmanifold if the
Reeb vector field Rof a is a Killing vector
field of unit length on M so that the tensor
field @ of type (1, 1), defined bg(X) = -
[AR,, satisfies the condition

(Lk@)(Y) =9(X, Y) B- 9(Ren Y) X

for any pair of vector fields X and Y on M
and where /7 denote the Levi-Civita
connection associated to the contact metric.

The quadruple S = (Ra, @, g) is called a
Sasakian structureon M.

Definition 1.2.5 Let (M, S) be a Sasakian
manifold and let@ M - M be a
diffeomorphism, then (M, ¢@S) is a
isomorphic Sasakian structure where

(d% = (qo-lﬁRm (dja! (p-lD(P% (db)

1.3 Contact structures coming from
complex geometry

Another very important class of examples
(which is the central one for the results
presented here) comes from complex
analytic geometry.

Start from a connected complex manifeld
of complex dimension & 2 and from a real
smooth hypersurface M it.

Denote by J: X - TX the (integrable)
almost complex structure associated to
complex structure oK, where X denotes
the tangent bundle of the underlyil
smooth manifold oK.
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Then J(TM) cannot be equal to TM,
because this last space is odd-dimensional.

Therefore := TM n J(TM) is a J-invariant
subspace of real codimension 1 of TM, that
is, a hyper plane distribution with a natural
complex structure | We will call it the
complex distribution of M- X.

For various hypersurfaces dhe can get all
the degrees of integrability of this
distribution, from the completely integrable
case till the completely non-integrable (or
contact) one. A general situation whéims
automatically contact is got when N
strongly pseudoconvex.

Definition 1.3.1Let p be a smooth function
on X. It is called strictly plurisub -
harmonic (abbreviatedspsh if - d (fp) >
0, whered®p: = dp 0 J OTX.

If a cooriented real hypersurfacd X may
be defined locally in the neighborhood of
any of its points as a regular level ospsh
function which grows from its negative to
its positive side, then it is callestrongly
pseudoconvex

It is important to take care about the
coorientation of the hypersurface: seen
from one side it is pseudoconvex, from the
other it is pseudoconcave. The terminology

andp : =Y"%.; | z % This is a proper spsh

function. The complex distribution on any
euclidean sphere centered at the origin is
therefore a contact structure. As
homotheties centered at the origin leave
both the foliation of &™-{0} by such
spheres and the almost complex structure
invariant, they realize contactomorphisms
between all such contact spheres.
Therefore, one gets a well-defined contact
structure on $*! called the standard
contact structure on it.

2 - Tightness and fillability

There is a strong relationship between
contact topology and symplectic topology
due to the fact that contact structures
provide natural boundary conditions for
symplectic structures on manifolds with
boundary. Given a contact manifold (&),
and a symplectic manifold (VW) with oW

= M, we say that (W) fills (M, &) if some
compatibility conditions are satisfied.
Depending on how restricting these
conditions are, there are several different
notions of fillability.

In the following we will always assume that
M is an oriented 3-manifold and is
oriented and positive. This means tRat
the kernel of a globally defined smooth 1-
form a on M such thatt O da is a volume

was chosen such that the positive side is the form inducing the fixed orientation of M.

pseudoconcave one, distinguished by the

fact that holomorphic curves tangent to the
hypersurface are locally contained in that
side.

The announced general family of contact
manifolds given by complex geometry is
presented in the next proposition:

Proposition 1.3.2 ([21]) The complex
distribution of any strongly pseudoconvex
hypersurface of a complex manifold is a
(naturally oriented) contact structure.

The simplest example of this type of
construction is given b= C™, with n>1

21

Definition 2.0.3 The contact structuré on

M is called tight if there is no embedded
disc D /7 M such that its boundaryD is
tangent to & while D is transversal taf
along the boundary.

Tightness of a contact structure is
guaranteed by the following properties of
fillability.

2.1 Various notions of fillability.
Let us come back to the examples of

contact manifolds originating in complex
geometry.



Dathe et al.

Definition 2.1.1 A complex manifold with a
proper spsh function is called &tein
manifold.

Consider a Stein manifold and a proper
spsh functionp : X — R bounded from
below. Let M : =X,-5 be a regular level of
p. We call the compact sublevél: = X<,

a compact Stein manifold. One should note
thatY is a compact smooth manifold with-
boundary, but that it is not a compact
complex manifold. By Proposition 1.3.2,
the complex distribution on M is a contact
structure. This motivates:

Definition 2.1.2 A contact manifold which
is contactomorphic to the contact boundary
of a compact Stein manifold is call&tein
fillable, and any such compact Stein
manifold is aStein filling of the initial
manifold.

A more general notion is obtained by
asking that the bounded from below and
proper functionp be spsh only in a
neighborhood of its considered regular level
M. One obtains then the notion of compact
complex manifold with boundary, and a
related notion of filling:

Definition 2.1.3 A contact manifold which
is contactomorphic to the complex
distribution on a strongly pseudoconvex
boundary of a compact complex manifold
with boundary is calledholomorphically
fillable, and any such compact complex
manifold is aholomorphic filling of the
initial manifold.

Holomorphically fillable contact structure
can be found in the world of Sasakian
manifold by a result of Marinescu and
Yeganefar ([20]), which assert that:

Proposition 2.1.4 ([20]) every compact
Sasakian manifold is holomorphically
fillable.

One may forget part of the previous
structures in order to arrive at concepts of
symplectic geometry, which make no
reference to an almost-complex structure:

,Characterization of holomorphically

Definition 2.1.5 A strong symplectic filling
of (M, é) is a compact symplectic manifold
(Y; @ with boundarydY = M such that
there exists a primitivea of w in a
neighborhood of M whose restriction to M
is a defining form of.

A weak symplectic filling of (M, ¢) is a
compact symplectic manifoldYy( «) with
boundarydY = M such that the restriction
of wto £ is a field of positive symplectic
forms oné.

Thus, we have four different rigidity
notions for contact structures, which are
ordered as follows:

Proposition 2.1.6 holomorphically fillable
= Stein fillable = strongly symplectically
fillable = weakly symplectically fillable=
tight.

Proof. Weakly fillable contact structures
are tight by a deep theorem of Eliashberg
and Gromov ([5, 15]). And by the
Definition (2.1.5), we see that strongly

symplectically fillable are  weakly
symplectically fillable. If (M, &) is a
holomorphically  fillable contact 3-

manifold, then it is necessarily Stein fillable
(Bogomolov and de Oliveira ([3])), so there
exists a Stein manifold and a proper spsh
function

p : X - R bounded from below such that
M: = Xp=a be a regular level op. If one
denotes:

Wp = dp,

Thenog|v is a contact form defining, w,
is a symplectic form oX and Kp<a, G)) IS

a compact symplectic manifold with
boundaryoXp<a = M, thus (M,§) is strongly
symplectically fillable by the Definition
(2.1.5).

However, it is know now that the fou
different rigidity notions do not coincide
tight but non weakly fillable contac
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structures have been found first by Etnyre
and Honda ([8]) and later by Lisca and
Stipsicz ([18, 19]). A weakly fillable but no
strongly fillable contact structure has been
found first by Eliashberg ([4]) and later
more have been found by Ding and Geiges
([210]). And strongly fillable contact 3-
manifolds without Stein fillings have been
found by Ghiggini in ([12]).

2.2 Fillable contact structure on T

Most of the results in this section can be
found in ([4]). The standard contact
structureZ; on T is the contact structure on
the unit cotangent bundle of the 2-torus. If
(x, y) are cyclic coordinates irf;Tand@ is a
1-periodic coordinate along the fiber', S
then{,; can be defined by the 1-foroy =
coP dx + sirf dy.

Proposition 2.2.1 the standard contact
structure {1 is holomorphically fillable

Proof. Indeed, as every cotangent space
TET? = T2 x R? is equipped with a natural
symplectic formwy = dA, whereA is the
Liouville 1-form A = zdx + zdy, where (X,
y)OT? = R¥/Z? and (2, z,) O R% Let (rp)C]]

0, +o[xR/2rZ be the polar coordinates
defined on R{0} by z =rco®and z=r
sind, the restriction of the Liouville 1-form

A on W = T? x (R®\{0}), is the 1-formo, =

r (cod dx + sirb dy).

o, induces in each hypersurface: r = f(x, v,
8), where f is a positive function, a contact
form and all these contact forms, define the
same contact structur® on T = {(X, V,
0)}. The symplectization of €T i) is
isomorphic to (W, wp = dz O dx + dz [
dy).

Moreover the Liouville vector field = z
(0/0z;) + 2, (0/02y).

IS yp - dual toA and can be taken gradient-
like to a spsh function on WThus, by the
equivalent Definitions (2.1.2) and (2.1.3),
(T3, Z4) is holomorphically fillable.
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Let pi: T° -T2 n = 2... be a sequence of
cyclic coverings (X, yB) - (x, y, ). Let
us denote by, n = 1... the pullback of the
contact structur€; under the coveringp
Thus,Z, = {a, = 0} wherea, = phai = cos
(nB) dx + sin (1) dy.

All the contact structure, are clearly tight
because they all have the same universal
covering: the standard contact structure on
R®. Moreover, as noticed by E. Giroux in
([13]), all these structures are weakly
symplectically fillable. Also E. Giroux
([13]), and independently Y. Kanda ([16]),
proved the following theorem.

Theorem 2.2.2 ([13; 16]) the contact
structures {,, n = 1... are pairwise non
diffeomorphic and give the complete, up to
diffeomorphism, list of positive tight contact
structures on .

Furthermore Eliashberg proved in ([4]) the
following theorem.

Theorem 2.2.3([4]) the contact structures
{» for n > 1 are not strongly symplectically
fillable, and therefore not holomorphically
fillable.

Combining
(2.2.2) and
Eliashberg get
corollary.

the Theorems (2.2.3) and
the Proposition (2.2.1),
in ([4]) the following

Corollary 2.2.4 ([4]) the contact structure
{1 on T3 is the unique up to isotopy
holomorphically fillable contact structure.

3 - Proof of the main Theorem

The set HHE of symplectically fillable
contact structures considered up to
homotopy (as cooriented 2-plane fields) on
a closed 3-manifold M is a subtle invariant
of M. By a theorem of Eliashberg and
Thurston ([7]), the cardinality of HHFis

an upper bound for the number of
homotopy classes of taut foliations on M.
And in ([17]) P. Lisca proved the following.
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Proposition 3.0.5([17]) let M be a closed
oriented 3-manifold carrying metrics with
strictly positive scalar curvature. Ther,
HHFy / < /Tor Hy (M, Z)/, where Tor H
(M, 2) is the torsion subgroup of;KM, Z)
and // denotes cardinality.

The following corollary is our direct
consequence of the Propositions (2.1.6) and
(3.0.5).

Corollary 3.0.6 let M be a closed oriented
3-manifold carrying metrics with strictly
positive scalar curvature. Then/HFy /

< /Tor Hy (M, Z)/, (4) where Hiy be the
number, up to isotopy, of holomorphically
fillable contact structure on M.

The 3-dimensional Heisenberg group °Nil
can be described by the group of 3 by 3 real
matrices of the form (see ([2])). As a
manifold it is just R,

There are two natural isomorphic Sasakian
structures on Nil the right invariant
contact form a = dz — y dx, and theeft
invariant contact form a“ = dz — x dy.
These are related by the involution:

1 : R = R®defined by (x, y, ) = (y, X, 2),
that ist 0" = a®.

Notice thati reverses orientation. These

contact forms give rise to theight

invariant Sasakain structure S° = (Z, o,

®R o) and theleft invariant Sasakain

structure SL = (Zo", @, d), where Z =

aZ)

®R = (0, + yd,) O dy-ad,0dx, & = (dx)?
+(dy)® + (dz - y dxF,

and

" = @y + xd,) 0 dx -9, O dy, g = (dxf

+ (dyf + (dz — x dyj.

Both Sasakian structures have the same
Reeb vector field. So the Heisenberg group

,Characterization of holomorphically

has what we called abi-Sasakian
structure. Moreover we see that

St =Yzttt g =S

Thus it follows from the Definition 1.2.5,
that $ and & are isomorphic.

Therefore we can fix one of these
structures, namely the right Sasakian
structure § and refer to it as thstandard
Sasakian or CR structure on Nil.
Moreover it is proved in ([2]) that:

Proposition 3.0.7 ([2]) Let M be a 3-
dimensional compact manifold, which is
diffeomorphic to a left quotient of the 3-
dimensional Heisenberg group Rlilthen
the only Sasakian structure passes down to
the quotient is the standard ane

Proof of the main Theorem (0.0.1)

Let M be a T - bundle over Swith non-
periodic monodromy matrix Al SL, (2),
satisfyingltr A| = 2. Following Geiges and
Gonjalo ([11]), M is a left quotient of Nil
Moreover from ([2]), M is diffeomorphic to
the quotient manifold formed by the
subgroupl, = Nil® (Z, k) of Nil* obtained
by restricting the real coordinates (X, v, z)
in Nil® to take values in the set of all
integers divisible by the integer k > 0.
Furthermore one has always following ([2])
that:

Hi(M, Z) =Z 0 Z, with k = 1, 2, 3. Thus
| Tor Hh (M, 2)| O{1, 2, 3.

Since M is a Sasakian manifold then it
follows from ([1]), that it carries a metric
with positive scalar curvature. Then, by the
above Corollary (3.0.6) we have:

0 <HFy <3.
Following the Proposition (3.0.7), the on""
Sasakian structure passes down to
guotient is the standard one. And by i
Proposition (2.1.4) tell us that the induc
Sasakian structure is holomorphica
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fillable, and then by the Proposition 2.1.4,
we have:
1<HFu <3
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