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CHARACTERIZATION OF HOLO-
MORPHICALLY FILLABLE 
CONTACT STRUCTURES ON 
SOME T2 – BUNDLES OVER S1 
 
Hamidou DATHE1, Cheikh KHOULE2 

 
 
Abstract. 
In this notes we give An estimation up to isotopy of the number of holomorphically fillable 
contact structures on T2 

- bundle over S1, with non-periodic monodromy matrix A ∈ SL2 (Z) 
satisfying |tr A| = 2. 
 
Keywords and Phrases : T2-bundles over the S1, monodromy, hollomorphically fillable. 
 
 
 Résumé. 
 
Dans cet article on donne une estimation, à isotopie près, du nombre de structures de contact 
holomorphiquement remplissables sur les fibres en tores T2 sur le cercle S1 dont la matrice de 
monodromie est de trace en valeur absolue égale à 2. 
 
0-Introduction 
 
The main Theorem in this paper is the following. 
 
Theorem 0.0.1 Let M be a T2 - bundle over S1 with non-periodic monodromy matrix A ∈ SL2 

(Z) satisfying |tr A| = 2 and HFM the number up to isotopy of holomorphically fillable contact 
structures on M. Then we have 1 ≤ HFM ≤ 3. 
 
Before proving the main Theorem 0.0.1 in section 3, we recall in section 1, general notions of 
contact structures, most of them are taken in papers cited in reference. 
 
In section 2, we discuss tightness and fillability of a contact structure. As an application we 
recall the result of Y. Eliashberg ([4]), which assert that there exist a unique holomorphically 
fillable contact structure on the 3-torus with the particularity that here the explicit filling is 
given. 
 
So the result of this paper can be seen as an extension of the result of Y. Eliashberg in ([4]) to 
all T2 - bundle over S1 with non-periodic monodromy matrix A ∈ SL2 (Z) satisfying |tr A|= 2. 
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2 - Contact manifolds 
We recommend as a general reference on 
contact geometry Geiges' recent textbook 
([9]). 
 
Let M be a differential manifold and ξ ⊂ 
TM a hyper plane fields on M. Locally ξ 
can always be written as the kernel of a 
non-vanishing 1-form α. One way to see 
this is to choose an auxiliary Riemannian 
metric g on M and then to define α = g(X, 
.), where X is a local non-zero section of 
the line bundle ξ⊥ (the orthogonal 
complement of ξ in TM). We see that the 
existence of a globally defined 1-form α 
with ξ= Ker α is equivalent to the 
orientability (hence triviality) of ξ⊥, i.e. the 
coorientability of ξ. In this paper, the 
manifold M will be assumed to be oriented 
and all the plane fields supposed to be 
coorientable. 
 

If α satisfies the Frobenius integrability 
condition α ∧ dα = 0, then ξ is an 
integrable hyper plane field (and vice 
versa), and its integral submanifolds form a 
codimension 1 foliation of M. And an 
integrable hyper plane field is locally of the 
form dp = 0, where p is a coordinate 
function on M. 
 
Contact structures are in a certain sense the 
exact opposite of integrable hyper plane 
fields. 
 
1.1 Basic notions 
 
Definition 1.1.1 Let M be a (2n+1)-
dimensional manifold. A contact structure 
on M is a hyper plane distribution ξ in TM 
given by a global 1-form α such that α ∧ 
(dα)n vanishes nowhere. We say that the 
pair (M, ξ) is a contact manifold and that 
α is a contact form. The form α is called 
positive if α ∧ (dα) n defines the chosen 
orientation of M. If n is odd, then the 
orientation defined by α ∧ (dα) n does not 
depend on the choice of the defining form 

α, hence one can speak about positive 
contact structures. 
 
The following listed 1-forms are contact 
forms and the verification is left to the 
reader. 
 
Example 1.1.2 on R2n+1 with Cartesian 
coordinates (x1, y1,…, xn, yn , z), the 1-form 
α1 = dz + ∑n i=1 xi dyi is a contact form. 
 
Example 1.1.3 on R2n+1 with polar 
coordinates (rj, θj) for the (xj, yj)-plane,  
j=1,....,n, the 1-form α1 = dz + ∑n j=1 rj dθj = 
dz + ∑n j=1 (xj dyj - yj dxj) is a contact form. 
 
Example 1.1.4 on the sphere S2n+1, say S3. 
On has a contact form α by restricting on 
S3 the 1-form ω0 on R4, with coordinates (x0, 
y0, x1, y1) defined as follow:  
ω0 = x0dy0 - y0dx0 + x1dy1 - y1dx1. 
 
Let us discuss now the problem of 
classification of contact structures. As in 
any problem of classification, one has to 
decide first which objects are considered 
equivalent. A particular case of homotopy 
is obtained by changing the structure using 
a path of isomorphisms of the underlying 
fixed space, in which case one speaks about 
isotopy. Let us be more formal for the case 
of contact structures. 
 
Definition 1.1.5 Two contact manifolds 
(M1, ξ1) and (M2, ξ2) are called 
contactomorphic if there is a 
diffeomorphism f: M1 → M2 with f∗ (ξ1) = 
ξ2, where f∗ : TM1 → TM2 denotes the 
differential of f. If ξi = Ker αi, i = 1, 2, this 
is equivalent to the existence of a nowhere 
zero function λ : M1 → R such that f∗

 α2 = 
λα1. 
 
Example 1.1.6 the contact manifolds 
(R2n+1, ξi = Ker αi, i = 1, 2) from the 
preceding examples are contactomorphic. 
An  explicit  contactomorphism  f  with f∗

 α2 
= α1 is given by: f (x; y; z) = [(x + y) / 2, (y 
- x) / 2, z + x y / 2], where x and y stand for 
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(x1, … , xn) and (y1, … , yn), respectively, 
and x y stands for ∑j xj yj.  
 
Similarly, both these contact structures are 
contactomorphic to Ker (dz - ∑j xj yj). Any 
of these contact structures is called the 
standard contact structure on R2n+1. 
 
Definition 1.1.7 A homotopy between two 
contact structures is a smooth path of 
contact structures connecting them. 
 
An isotopy between two contact structures 
is a homotopy of the form (φ∗

tξ)t, where (φt)t 
is a smooth path of self-diffeomorphisms of 
M. 
 
Two contact structures ξ and ξ’ ’ on M are 
homotopic, resp. isotopic, resp. isomorphic 
if there is a homotopy, resp. an isotopy, 
resp. a contactomorphic of M which sends 
ξ on ξ’ ’ . 
 
One usually tries to classify contact 
structures on a given manifold up to isotopy 
or up to contactomorphism. Any contact 
structure may be seen as a hyper plane 
field, but one has to be careful because a 
homotopy between the underlying hyper 
plane fields of two contact structures is not 
necessarily a homotopy of contact 
structures. 
 
Again, a general problem of classification 
of structures splits into a local and into a 
global one. Like complex structures and 
foliations, contact forms have no local 
invariants: 
 
Theorem 1.1.8 (Darboux) Any contact 
form may be written in suitable local 
coordinates as the standard contact 
structure on R2n+1. 
 
Globally the situation is distinct, due to the 
fact that there is a canonical vector field 
attached to any contact form. 
 

Definition 1.1.9 Associated with a contact 
form α one has the so-called Reeb vector 
field Rα, defined by the equations: 
(i) dα(Rα, .) = 0 
(ii)  α(Rα) = 1. 
Then any dynamical invariants of the Reeb 
vector field are invariants of the contact 
form, which makes one, feel that by 
deforming a form, the global structure may 
change drastically. When one keeps instead 
of the whole contact form only the contact 
structure defined by a contact form, the 
situation is completely different. 
 
Theorem 1.1.10 (Gray [14]) two 
homotopic contact structures on a closed 
manifold are isotopic. 
 
1.2 Contact structures and Sasakian 
metrics 
 
Definition 1.2.1 An almost contact 
structure on a differentiable manifolds M is 
a triple (Z, η, Φ), where Φ is a tensor field 
of type (1, 1) (i.e. an endomorphism of TM), 
Z is a vector field, and α is a 1-form which 
satisfy η(Z) = 1 and Φ ο Φ = - Ι + Z⊗η, 
where Ι is the identity endomorphism on 
TM. A smooth manifold with such a 
structure is called an almost contact 
manifold. 
 
We have seen that contact geometry exists 
only in odd dimensions. But it interacts 
very deeply with an even-dimensional 
geometry, namely symplectic geometry. 
 
Definition 1.2.2 A symplectic form on an 
even-dimensional vector space is a non-
degenerate exterior form of degree 2. A 
symplectic form on an even-dimensional 
manifold is a closed non-degenerate smooth 
form of degree 2. A symplectic manifold is 
a manifold endowed with a symplectic form. 
 
Let (M, α) be a contact manifold with a 
contact 1-form α and consider ξ = Ker α ⊂ 
TM. The subbundle ξ is maximally non-
integrable and it is called the contact 
distribution. As a first example of the 
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presence of symplectic structures in the 
contact world, note that part of Definition 
1.1.1 may be rephrased as saying that α is a 
contact form if and only if dα is a 
symplectic form in restriction to Kerα. An 
equivalent formulation of the contact 
condition is that the pair (ξ, dα|ξ) gives ξ 
the structure of a symplectic vector bundle. 
We denote by J(ξ) the space of all almost 
complex structures J on ξ that are 
compatible with dα|ξ, that is the subspace of 
smooth sections J of the endomorphism 
bundle End(ξ) that satisfy: 
 

J2 = -Ι, dα(JX, JY ) = dα(X, Y),  

dα(X; JX) > 0  (1) 

for any smooth sections X, Y of ξ.  

Notice that each J ∈ J(ξ) defines a 

Riemannian metric gξ on ξ by setting: 

gξ(X, Y) = dα(X, JY).  (2) 

 
One easily checks that gξ satisfies the 
compatibility condition gξ (JX, JY) = gξ (X, 
Y). Furthermore, the map J → gξ is one-to-
one, and the space J(ξ) is contractible. A 
choice of J gives M an almost CR structure. 
 
Moreover, by extending J to all of TM one 
obtains an almost contact structure. There 
are some choices of conventions to make 
here. We define the section Φ of End(TM) 
by Φ = J on ξ and ΦRα= 0, where Rα is the 
Reeb vector field associated to α. We can 
also extend the transverse metric gξ to a 
metric g on all of M by 
 

g(X, Y) = gξ(X, Y) + α(X) α(Y) = dα(X, 

ΦY) + α(X) α(Y),  (3) 
 
for all vector fields X, Y on M. One easily 
also sees that g satisfies the compatibility 
condition g(ΦX, ΦY) = g(X, Y) - α(X) 
α(Y). 
 
Definition 1.2.3 A contact manifold M with 
a contact form α, a vector field Rα, a 

section Φ of End(TM), and a Riemannian 
metric g which satisfy the conditions 
 

α(Rα) = 1 and Φ ο Φ = - Ι + Rα ⊗ α, 

g(ΦX, ΦY) = g(X, Y) - α(X) α(Y) 
is known as a contact metric on M. 
 
Definition 1.2.4 A contact metric manifold 
(M, α) is called a Sasakian manifold if the 
Reeb vector field Rα of α is a Killing vector 
field of unit length on M so that the tensor 
field Φ of type (1, 1), defined by Φ(X) = -
∇XRα, satisfies the condition 
 

(∇XΦ)(Y) = g(X, Y) Rα - g(Rα, Y) X 
 
for any pair of vector fields X and Y on M 
and where ∇ denote the Levi-Civita 
connection associated to the contact metric. 
 
The quadruple S = (Rα, α, Φ, g) is called a 
Sasakian structure on M. 
 
Definition 1.2.5 Let (M, S) be a Sasakian 
manifold and let φ: M → M be a 
diffeomorphism, then (M, φ∗S) is a 
isomorphic Sasakian structure where 
 

φ∗S = (φ-1
∗Rα, φ∗α, φ-1

∗Φφ∗, φ∗g). 
 
1.3 Contact structures coming from 
complex geometry. 
 
Another very important class of examples 
(which is the central one for the results 
presented here) comes from complex 
analytic geometry.  
 
Start from a connected complex manifold Χ 
of complex dimension n ≥ 2 and from a real 
smooth hypersurface M of it. 
 
Denote by J: TΧ → TΧ the (integrable) 
almost complex structure associated to the 
complex structure of Χ, where TΧ denotes 
the tangent bundle of the underlying 
smooth manifold of Χ.  
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Then J(TM) cannot be equal to TM, 
because this last space is odd-dimensional. 
 
Therefore ξ := TM ∩ J(TM) is a J-invariant 
subspace of real codimension 1 of TM, that 
is, a hyper plane distribution with a natural 
complex structure J|ξ. We will call it the 
complex distribution of M→Χ. 
 
For various hypersurfaces M one can get all 
the degrees of integrability of this 
distribution, from the completely integrable 
case till the completely non-integrable (or 
contact) one. A general situation when ξ is 
automatically contact is got when M is 
strongly pseudoconvex. 
 
Definition 1.3.1 Let ρ be a smooth function 
on Χ. It is called strictly plurisub -
harmonic (abbreviated spsh) if - d (dcρ ) > 
0, where dc ρ : = dρ ο J ∈ T∗Χ. 
 
If a cooriented real hypersurface of Χ may 
be defined locally in the neighborhood of 
any of its points as a regular level of a spsh 
function which grows from its negative to 
its positive side, then it is called strongly 
pseudoconvex. 
 
It is important to take care about the 
coorientation of the hypersurface: seen 
from one side it is pseudoconvex, from the 
other it is pseudoconcave. The terminology 
was chosen such that the positive side is the 
pseudoconcave one, distinguished by the 
fact that holomorphic curves tangent to the 
hypersurface are locally contained in that 
side. 
 
The announced general family of contact 
manifolds given by complex geometry is 
presented in the next proposition: 
 
Proposition 1.3.2 ([21]) The complex 
distribution of any strongly pseudoconvex 
hypersurface of a complex manifold is a 
(naturally oriented) contact structure. 
 
The simplest example of this type of 
construction is given by Χ= Cn+1, with n ≥1 

and ρ : = ∑n+1
j=1 | zj |2. This is a proper spsh 

function. The complex distribution on any 
euclidean sphere centered at the origin is 
therefore a contact structure. As 
homotheties centered at the origin leave 
both the foliation of Cn+1-{0} by such 
spheres and the almost complex structure 
invariant, they realize contactomorphisms 
between all such contact spheres. 
Therefore, one gets a well-defined contact 
structure on S2n+1, called the standard 
contact structure on it. 
 
2 - Tightness and fillability 
 
There is a strong relationship between 
contact topology and symplectic topology 
due to the fact that contact structures 
provide natural boundary conditions for 
symplectic structures on manifolds with 
boundary. Given a contact manifold (M, ξ) 
and a symplectic manifold (W, ω) with ∂W 
= M, we say that (W, ω) fills (M, ξ) if some 
compatibility conditions are satisfied. 
Depending on how restricting these 
conditions are, there are several different 
notions of fillability. 
 
In the following we will always assume that 
M is an oriented 3-manifold and ξ is 
oriented and positive. This means that ξ is 
the kernel of a globally defined smooth 1-
form α on M such that α ∧ dα is a volume 
form inducing the fixed orientation of M. 
 
Definition 2.0.3 The contact structure ξ on 
M is called tight if there is no embedded 
disc D ⊂ M such that its boundary ∂D is 
tangent to ξ while D is transversal to ξ 
along the boundary. 
 
Tightness of a contact structure is 
guaranteed by the following properties of 
fillability. 
 
2.1 Various notions of fillability. 
 
Let us come back to the examples of 
contact manifolds originating in complex 
geometry. 
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Definition 2.1.1 A complex manifold with a 
proper spsh function is called a Stein 
manifold. 
 

Consider a Stein manifold Χ and a proper 
spsh function ρ : Χ → R bounded from 
below. Let M : = Χρ=a be a regular level of 
ρ. We call the compact sublevel Υ : = Χρ≤a 
a compact Stein manifold. One should note 
that Υ is a compact smooth manifold with-
boundary, but that it is not a compact 
complex manifold. By Proposition 1.3.2, 
the complex distribution on M is a contact 
structure. This motivates: 
 

Definition 2.1.2 A contact manifold which 
is contactomorphic to the contact boundary 
of a compact Stein manifold is called Stein 
fillable, and any such compact Stein 
manifold is a Stein filling of the initial 
manifold. 
 

A more general notion is obtained by 
asking that the bounded from below and 
proper function ρ be spsh only in a 
neighborhood of its considered regular level 
M. One obtains then the notion of compact 
complex manifold with boundary, and a 
related notion of filling: 
 

Definition 2.1.3 A contact manifold which 
is contactomorphic to the complex 
distribution on a strongly pseudoconvex 
boundary of a compact complex manifold 
with boundary is called holomorphically 
fillable, and any such compact complex 
manifold is a holomorphic filling of the 
initial manifold. 
 

Holomorphically fillable contact structure 
can be found in the world of Sasakian 
manifold by a result of Marinescu and 
Yeganefar ([20]), which assert that: 
 

Proposition 2.1.4 ([20]) every compact 
Sasakian manifold is holomorphically 
fillable. 
 

One may forget part of the previous 
structures in order to arrive at concepts of 
symplectic geometry, which make no 
reference to an almost-complex structure: 

Definition 2.1.5 A strong symplectic filling 
of (M, ξ) is a compact symplectic manifold 
(Υ, ω) with boundary ∂Υ = M such that 
there exists a primitive α of ω in a 
neighborhood of M whose restriction to M 
is a defining form of ξ. 
 

A weak symplectic filling of (M, ξ) is a 
compact symplectic manifold (Υ, ω) with 
boundary ∂Υ = M such that the restriction 
of ω to ξ is a field of positive symplectic 
forms on ξ. 
 

Thus, we have four different rigidity 
notions for contact structures, which are 
ordered as follows: 
 

Proposition 2.1.6 holomorphically fillable 
⇒ Stein fillable ⇒ strongly symplectically 
fillable ⇒ weakly symplectically fillable ⇒ 
tight. 
 

Proof. Weakly fillable contact structures 
are tight by a deep theorem of Eliashberg 
and Gromov ([5, 15]). And by the 
Definition (2.1.5), we see that strongly 
symplectically fillable are weakly 
symplectically fillable. If (M, ξ) is a 
holomorphically fillable contact 3-
manifold, then it is necessarily Stein fillable 
(Bogomolov and de Oliveira ([3])), so there 
exists a Stein manifold Χ and a proper spsh 
function  
 

ρ : Χ → R bounded from below such that 

M: = Χρ=a be a regular level of ρ. If one 
denotes: 

αρ : = - dcρ 

ωρ : = dαρ. 
 

Then αρ|M is a contact form defining ξ, ωρ 
is a symplectic form on Χ and (Χρ≤a, ωρ) is 
a compact symplectic manifold with 
boundary ∂Χρ≤a = M, thus (M, ξ) is strongly 
symplectically fillable by the Definition 
(2.1.5). �  
 

However, it is know now that the four 
different rigidity notions do not coincide: 
tight but non weakly fillable contact 
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structures have been found first by Etnyre 
and Honda ([8]) and later by Lisca and 
Stipsicz ([18, 19]). A weakly fillable but no 
strongly fillable contact structure has been 
found first by Eliashberg ([4]) and later 
more have been found by Ding and Geiges 
([10]). And strongly fillable contact 3-
manifolds without Stein fillings have been 
found by Ghiggini in ([12]). 
 
2.2 Fillable contact structure on T3 

 

Most of the results in this section can be 
found in ([4]). The standard contact 
structure ζ1 on T3 is the contact structure on 
the unit cotangent bundle of the 2-torus. If 
(x, y) are cyclic coordinates in T2, and θ is a 
1-periodic coordinate along the fiber S1, 
then ζ1 can be defined by the 1-form α1 = 
cosθ dx + sinθ dy. 
 

Proposition 2.2.1 the standard contact 
structure ζ1 is holomorphically fillable. 
 

Proof. Indeed, as every cotangent space 
T∗T2 = T2 × R2 is equipped with a natural 
symplectic form ω0 = dλ, where λ is the 
Liouville 1-form λ = z1dx + z2dy, where (x, 
y)∈T2 = R2/Z2 and (z1, z2) ∈ R2. Let (r,θ)∈] 
0, +∞[×R/2πZ be the polar coordinates 
defined on R2 \{0} by z1 = r cosθ and z2 = r 
sinθ, the restriction of the Liouville 1-form 
λ on W0 = T2 × (R2 \{0}), is the 1-form αr = 
r (cosθ dx + sinθ dy). 
 

αr induces in each hypersurface: r = f(x, y, 
θ), where f is a positive function, a contact 
form and all these contact forms, define the 
same contact structure ζ1 on T3 = {(x, y, 
θ)}. The symplectization of (T3, ζ1) is 
isomorphic to (W0, ω0 = dz1 ∧ dx + dz2 ∧ 
dy).  
 
Moreover the Liouville vector field X0 = z1 
(∂/∂z1) + z2 (∂/∂z2). 
 
is ω0 - dual to λ and can be taken gradient-
like to a spsh function on W0. Thus, by the 
equivalent Definitions (2.1.2) and (2.1.3), 
(T3, ζ1) is holomorphically fillable. �  

 

Let pn: T
3 →T3, n = 2… be a sequence of 

cyclic coverings (x, y, θ) → (x, y, nθ). Let 
us denote by ζn, n = 1… the pullback of the 
contact structure ζ1 under the covering pn. 
Thus, ζn = {αn = 0} where αn = p∗

nα1 = cos 
(nθ) dx + sin (nθ) dy. 
 

All the contact structures ζn are clearly tight 
because they all have the same universal 
covering: the standard contact structure on 
R3. Moreover, as noticed by E. Giroux in 
([13]), all these structures are weakly 
symplectically fillable. Also E. Giroux 
([13]), and independently Y. Kanda ([16]), 
proved the following theorem. 
 

Theorem 2.2.2 ([13; 16]) the contact 
structures ζn, n = 1… are pairwise non 
diffeomorphic and give the complete, up to 
diffeomorphism, list of positive tight contact 
structures on T3. 
 

Furthermore Eliashberg proved in ([4]) the 
following theorem. 
 

Theorem 2.2.3 ([4]) the contact structures 
ζn for n > 1 are not strongly symplectically 
fillable, and therefore not holomorphically 
fillable. 
 

Combining the Theorems (2.2.3) and 
(2.2.2) and the Proposition (2.2.1), 
Eliashberg get in ([4]) the following 
corollary. 
 

Corollary 2.2.4 ([4]) the contact structure 
ζ1 on T3 is the unique up to isotopy 
holomorphically fillable contact structure. 
 

3 - Proof of the main Theorem 
 
The set HHFM of symplectically fillable 
contact structures considered up to 
homotopy (as cooriented 2-plane fields) on 
a closed 3-manifold M is a subtle invariant 
of M. By a theorem of Eliashberg and 
Thurston ([7]), the cardinality of HHFM is 
an upper bound for the number of 
homotopy classes of taut foliations on M. 
And in ([17]) P. Lisca proved the following. 
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Proposition 3.0.5 ([17]) let M be a closed 
oriented 3-manifold carrying metrics with 
strictly positive scalar curvature. Then,  
HHFM  ≤ Tor H1 (M, Z), where Tor H1 

(M, Z) is the torsion subgroup of H1 (M, Z) 
and  denotes cardinality. 
 
The following corollary is our direct 
consequence of the Propositions (2.1.6) and 
(3.0.5). 
 
Corollary 3.0.6 let M be a closed oriented 
3-manifold carrying metrics with strictly 
positive scalar curvature. Then, HFM  
<Tor H1 (M, Z), (4) where HFM be the 
number, up to isotopy, of holomorphically 
fillable contact structure on M. 
 

The 3-dimensional Heisenberg group Nil3 
can be described by the group of 3 by 3 real 
matrices of the form (see ([2])). As a 
manifold it is just R3.  
 

There are two natural isomorphic Sasakian 
structures on Nil3: the right invariant 
contact form αR = dz – y dx, and the left 
invariant contact form  αL = dz – x dy. 
These are related by the involution:  
 

ι : R3 → R3 defined by ι(x, y, z) = (y, x, z), 
that is ι∗αL = αR. 

 

Notice that ι reverses orientation. These 
contact forms give rise to the right 
invariant Sasakain structure SR = (Z, αR, 
ΦR, gR) and the left invariant Sasakain 
structure SL = (Z, αL, ΦL, gL), where Z = 
∂z,  
 

ΦR = (∂x + y ∂z) ⊗ dy - ∂y ⊗ dx, gR = (dx) 2 

+ (dy) 2 + (dz – y dx) 2, 

and 

ΦL = (∂y + x ∂z) ⊗ dx - ∂x ⊗ dy, gL = (dx)2 

+ (dy)2 + (dz – x dy)2. 

 
Both Sasakian structures have the same 
Reeb vector field. So the Heisenberg group 

has what we called a bi-Sasakian 
structure. Moreover we see that 
 

SR = (ι-1
∗ Z, ι∗αL, ι-1

∗ΦLι∗, ι∗gL) = ι∗SL. 

Thus it follows from the Definition 1.2.5, 
that SL and SR are isomorphic.  
 
Therefore we can fix one of these 
structures, namely the right Sasakian 
structure SL and refer to it as the standard 
Sasakian or CR structure on Nil3. 
Moreover it is proved in ([2]) that: 
 
Proposition 3.0.7 ([2]) Let M be a 3-
dimensional compact manifold, which is 
diffeomorphic to a left quotient of the 3-
dimensional Heisenberg group Nil3, then 
the only Sasakian structure passes down to 
the quotient is the standard one. 
 
Proof of the main Theorem (0.0.1)  
 
Let M be a T2 - bundle over S1 with non-
periodic monodromy matrix A ∈ SL2 (Z), 
satisfying tr A = 2. Following Geiges and 
Gonjalo ([11]), M is a left quotient of Nil3. 
Moreover from ([2]), M is diffeomorphic to 
the quotient manifold formed by the 
subgroup Γk = Nil3 (Z, k) of Nil3 obtained 
by restricting the real coordinates (x, y, z) 
in Nil3 to take values in the set of all 
integers divisible by the integer k > 0. 
Furthermore one has always following ([2]) 
that:  
 
H1 (M, Z) = Z ⊕ Zk, with k = 1, 2, 3. Thus 

Tor H1 (M, Z) ∈ {1, 2, 3}. 
 
Since M is a Sasakian manifold then it 
follows from ([1]), that it carries a metric 
with positive scalar curvature. Then, by the 
above Corollary (3.0.6) we have:  
 

0 < HFM ≤ 3. 
Following the Proposition (3.0.7), the only 
Sasakian structure passes down to the 
quotient is the standard one. And by the 
Proposition (2.1.4) tell us that the induced 
Sasakian structure is holomorphically 
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fillable, and then by the Proposition 2.1.4, 
we have:  

1 ≤ HFM ≤ 3. �  
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