J ournal de la Faculté des Sciences et Technologies
Volume 11, Numéro 2, pp. 23-33 (2015)

Properties of K-contact manifolds

Propriétés des variétés de K-contact

Philippe Rukimbira *

Abstract

This paper is a survey of some of the author’s results on K-contact manifolds. More results from
others have also been included as far as they are related to the author’s own results.
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Résumé

Cet article est un passage en revue de certains résultats de 'auteur sur les variétés de K-contact.
D’autres résultats de différents auteurs ont été ajoutés a mesure qu’ils sont reliés a ceux de 'auteur.

Mots clés : K-contact, Sasakienne.

1 Introduction

The paper is organized as follows. In section 2, we deal with preliminaries on contact metric structures,
including some constructions of contact metrics. Section 3 includes some curvature characterization
of Sasakian structures. The 1-nullity distribution is introduced and a description provided for its leaf
dimension on Sasakian manifolds. The angle function is also defined. This function is somehow involved
in the description of the first basic cohomology on K-contact manifolds, leading to the nonexistence results
for K-contact structures on odd-dimensional tori and parallel 1-forms on K-contact manifolds. The most
general result about nonexistence of parallel forms in K-contact geometry is stated without proof, which
uses more than just the angle function.

2 Preliminaries

A contact form on a 2n 4 1 dimensional manifold M is a 1-form « such that the identity a A (da)™ # 0
holds everywhere on M. Given such a 1-form «, there is always a unique vector field Z satisfying a(Z) = 1
and izda = 0. The vector field Z is called the characteristic vector field of the contact manifold (M, «)
and the corresponding 1-dimensional foliation is called a contact flow.

2.1 Examples of almost contact structures

We will give examples of contact forms since almost contact structures are always present whenever
contact forms are.

LR a=dz—Y" y'daiand Z = 2.

2. The sphere S% : on R*, with coordinates (2°,°, z!,4"'), consider wy = 2°dy® —y°da®+2'dy* —y'dx'.
Let 1 be the restriction of wy to S®. We claim that n A dn # 0 on S3. Indeed,

nAdn = 2(2%dy’ — 4°da® + 2tdy' —y'dat) A (dx® A dy® + dat A dyt).
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Notice that the 1-form 8 = 29d2® + z'da' + y°dy® + y'dy" is normal to S® and easily,

2 2

BAnAdy = (@) + (@) + )7 + (¥")*)(da® A dy® Ada' Ady') #0

along S® which shows that n A dn is nowhere zero on S3.

The above example generalizes to S?"T! C R2?"*2 with coordinates (z°,...,2™, 9%, ...,4™) and to
convex hypersurfaces in symplectic manifolds ¥ — (M?",Q), LyQ = Q, where N represents the
outer unit normal vector field along ¥ and € is the symplectic form on M.

3. Another example is 72 with coordinates 6',02, 63 : 1 = cos §3df* + sin #3d6>.

The 2n dimensional distribution D(p) = {v € T,M : a(p)(v) = 0}, which is invariant by Z, is called the
contact distribution. It carries a (1, 1) tensor field J such that —J? is the identity on D. The tensor field
J extends to all of TM if one requires JZ = 0. Also, the contact manifold (M, «) carries a nonunique

Riemannian metric g adapted to o and J in the sense that the following identities are satisfied for any
vector fields X and Y on M.

9(X,)Y) = ¢g(JX,JY)+ a(X)a(Y) (1)
do(X,Y) = 2¢(X,JY) (2)
I’X = —X+a(X)Z; JZ=0 (3)

Such a metric g is called a contact metric.
Our convention for the differential of a 1-form is as follows:

da(X,Y) = Xa(Y) — Ya(X) — a([X, Y)).

2.2 Construction of contact metric structures

Given (M, «, Z), let go be any metric on M. Let g; be the metric equal to go on D = kern «, g1(Z,2) =1
and ¢g1(D, Z) = 0. One defines a skew symmetric tensor field A as follows: da(X,Y) = 2¢;(AX,Y) for
any sections X, Y of D. When restricted to D, A is clearly nonsingular. Let B = v AA*, where A* is
the g1 adjoint of A. B is a symmetric, positive definite endomorphism of D which commutes with A and
A*. On D, we now define J = —B~'A. Clearly J2 = B 'AB 'A=B2AA=A""1'A=-A"'A=—-Id
shows that J is an almost complex structure on D. Observe that J is g;-orthogonal. For horizontal X
and Y,

g1 (B7'AX, B71AY) g1(AX, B7?AY)
= —q1(X,AB7?AY)
—g1(X, J?Y)

gl(Xa Y)

We extend J by JZ = 0 and define an intermediary metric go as follows:
1
%(X,Y) = [ (JX, JY) + 91 (J°X, J*Y)] + a(X)a(Y).

Finally, a contact metric g is obtained as: g(X,Y) = g2(BX,Y)+a(X)a(Y). Using the identity J3 = —J,
we will verify identities (1), (2) and (3). First,

1
= 3l (JBIX, JY) + u(J*BIX, J*JY)]

1
= 5[gl(ﬂBX, J*Y) + g1(JBX, JY)]

= 920BX,Y) =g(X,Y) — a(X)a(Y).
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Next,

29(X,JY) = 2¢3(BX,JY)
= q(JBX,J?Y)+ g:1(J*BX, J*Y)
= g(AX)Y)+q(JAX,JY)
= q(AX)Y)+gq(AX,Y)

1 1
= ida(X, Y)+ §da(X,Y) =da(X,Y)

Finally, J2X = J2((X — a(X)2) + a(X)Z) = —(X — a(X)Z) = =X + a(X)Z. It is easy to see that
Lza=0and Lzda =0, but LyzJ and Lzg need not vanish!

Proposition 2.1. On a contact metric manifold (M, o, J,g), LzJ =0 if and only if Lzg = 0.
Proof.

LZg(X,JY) = Zg(X,JY)—|—g([Z,X],JY)—I—g(X,(LZJ)Y)—i—g(X,J[Z,Y])
= LZda(X,Y) ~ 9(12,X],7¥) ~ g(X, (Lz)Y) - (X, J[Z,Y])

_ %da([Z, XL,Y) + %da(X, Z,Y]) - %da([Z, X1,Y)

~g(X, (Lz)Y) - Sda(X.[2,Y])
= _g(X7 (LZ'])Y)

Therefore, if Lzg =0, then (LzJ)Y = 0 for arbitrary Y. Conversely, suppose LzJ = 0. Then, from the
above observation, Lzg(X,JY) =0 for any Y. We need to show that Lzg(X,Z) =0 for all X.

LZQ(X7Z) = Zg(X7Z)_g([ZvX]’Z)
= Zo(X)-9(Z,X],2)
= o([Z,X]) —a([Z,X]) = 0.

This completes the proof. O

A contact metric structure on which LyzJ = 0 is called a K-contact structure. From the above
proposition, the characteristic vector field of a K-contact metric structure is an infinitesimal isometry,
also known as a Killing vector field.

Lemma 2.2. On a K-contact manifold (M, o, Z,J,g), one has VyZ=—JY , for all vector field Y on M.

Proof.
29(X,JY) = do(X,Y)=XalY)-Ya(X)—-a(X,Y)])
= Xg(Z,Y)-Yg(Z,X)—-9(Z,[X,Y])
= g(vXZaY)_g(VYz,X)
= —29(X,VyZ2).
So JY = -VyZ. O

We shall adopt the convention R(X,Y)W = VxVyW — VyVxW — Vxy|W, for the Riemann
curvature tensor.

Proposition 2.3. On a K-contact manifold (M, «, Z, J, g), the following identity holds :

(VxJ)Y = R(Z,X)Y. (4)
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Proof. Using the above lemma:

g(R(Z, X)Y,W) = g(VzVxY =VxVzY =V iz xY, W)

= g(V2VxY — Vx[Z,Y] ~ VxVyZ — Vizx V. W)

= g(VxJY, W)+ g(VzVxY, W) - g(Vx|[Z,Y],W)
—Q(V[ZJ(]Y, W)

= g(VxJY, W)+ Zg(VxY,W) - g(VxY,VzW)
—9(Vx[Z,Y],W) = g(Vizx)Y, W)

= g(VxJY,W)—g(Vx[Z,Y],W)
+9([Z, VxY], W) —g(JVxY, W) — g(V |z x1Y, W).

Let 1 denote the 1-parameter group of isometries generated by Z. Then

d d
Z,VxY| = —— «VxY =—— \% Y
[Z,VxY] dtu:owt X @t pt—o G XVt

= V[Zg(]y +Vx[Z,Y].

Hence, the above calculation is continued as: g(R(Z, X)Y,W)=g((VxJ)Y,W). Since W was arbitrary,
we conclude that R(Z, X)Y = (VxJ)Y. O

Given a contact metric structure (M, «, Z, J, g), consider the product manifold M x R. A vector field
on M xR can be written as X + f% where X is tangent to M, t is the coordinate on R and f is a smooth
function on M x R. We define an almost complex structure ¢ on M x R by:

X d,_ JX Z X d
OX + [ 2) =X — [Z+a(X) 5
If ¢ is a complex structure, we say that the contact structure («, Z, J) is normal and the corresponding
contact metric structure is called Sasakian.

By a classic theorem of Newlander and Nirenberg, an almost complex structure ¢ of class C*™ is a
complex structure if and only if its Nijenhuis torsion [¢, ¢] vanishes. The Nijenhuis torsion [T,T] of a
tensor field T of type (1, 1) is a tensor field given by:

[T,T)(X,Y) =T*X,Y]+ [TX,TY] - T[TX,Y] - T[X,TY].
It can be directly verified that
[T,T](fX,Y) = f[T’T](X’Y) and [T7T](X +W.Y) = [TaT](va) + [T,T](VV,Y)

for any vector fields X, Y, W and smooth function f. It is clear that the Nijenhuis torsion [¢, @] of ¢
vanishes if and only if [¢, ¢](X,Y) = 0 and [¢, ¢](X, &) = 0 for any vector fields X and Y tangent to M.
First, we evaluate [¢, ¢](X,Y):

[0,0](X,Y) = —[X, Y]+ [JX—i—a(X)%,JY—i—a(Y)%]

Y] = ¢[X,JY + oY) d

X +a(x) 4 2]

dt’

= —[X,Y]+[JX,JY]+ (JXa(Y) - JYa(X))%
OLTX,Y] 4 6V a(X) 5) — 61X, J¥] — o(Xa(V) )

= JX,)Y]-o([X,Y])Z+[JX,JY] - J[JX,Y]
—J[X,JY] = (a([JX,Y]) + a([X, JY]) — JXa(Y)
+JYa(X)% +(XaY)-Ya(X))Z

= [LJIX,Y) +da(X,Y)Z + (JX(Y) — JY a(X)

d

—a([JX, Y]) — o([X, IY])) .
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Next we evaluate [¢, ](X, %)

d d d d
GO D) = VX +a(X) L 2] X +a(0) % 4 _gpx.—z)
- X7+ Za(X)% +JIX, Z] + a([X, zp%

d

The identity Lza = 0 is valid on any contact structure, therefore, a contact structure is normal if and
only if the following 3 identities are satisfied for any X and Y.

[, J/(X,Y) +da(X,Y)Z = 0 (5)
JXa(Y) - JYa(X) — a([JX,Y]) - a([X,JY]) = (6)
(LzJ)X = 0 (7)

Proposition 2.4. Identity (5) implies identities (6) and (7). Therefore, a contact structure (o, Z, J) is
normal if and only if [J, J)(X,Y) + da(X,Y)Z = 0.

Proof. Setting Y = Z in (5),we obtain:
0=[JJ|(X,2) = J*X,Z]-J[JX,Z]

= —[X,Z]+ (X, 2)Z - J[JX, Z]

= —[X,Z2]-a([Z,X))Z + J(LzJ)X + J*|Z, X]

= J(LzJ)X.
Hence, applying J on both sides 0 = J?(LzJ)X = —(LzJ)X + a((LzJ)X)Z = —(LzJ)X. This proves
that (5) implies (7). To prove the implication (5)=-(6), apply « to the identity

0 = [LJJX,)Y)+da(JX,Y)Z
~JAJX,JY] + [J?X,JY] = J[J?X,Y] = J[JX,JY] + da(JX,Y)Z.

0 = o[J?°X,Y]) +da(JX,Y)
= a[-X,JY])+a(X)a([Z,JY]) = JY a(X) + da(JX,Y)
= —ao[X,JY]) = JYa(X) +da(JX,Y)
= —a[X,JY]) = JYa(X)+ JXa(Y) —a([JX,Y]).
This proves the implication (5)=- (6). O

It follows from the above proposition that a Sasakian contact metric structure is K-contact. The
converse holds in dimension 3; that is,

Proposition 2.5. A K-contact 3-dimensional manifold is Sasakian.

Proof. Let Z, E, JE be a local adapted orthonormal frame field on a K-contact 3-dimensional manifold
(M, o, Z,J,g). In order to prove that the structure is Sasakian, it is enough to show that [J, J|(E, E) = 0,
[J,J(E,JE)+ da(E,JE)Z =0 and [J, J|(E, Z) = 0.

[J,J(E,E) = ~J[JE,E] - J|E,JE| = —J[JE,E] + JJE,E] = 0
[J,J|(E,JE)+da(E,JEYZ = J?E,JE|+[JE,J?E]— J|E,J*E]+do(E,JE)Z

= —[E,JE]|+o(E,JE)Z — [JE,E] - o([E, JE])Z
= 0

[J, J|(E, Z) J?|E,Z) — J|JE,Z] = —|E, Z| + o(|E, Z))Z — J[JE, Z)
= —[BE,Z)+ J(LzJ)E + J*Z,E)

= —[E,Z]-J?E,Z]=0.
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Recall on a K-contact manifold, (VxJ)Y = R(Z, X)Y. More generally, for a contact metric structure
(J,Z,a, g), the covariant derivative of J is given by:

29((Vx )Y, A) = g(N'(Y, A), JX) + da(JY, X)a(A) - da(JA, X)a(Y).
Proof. Recall these identities:
29(VxY, A) = Xg(Y, A) + Yg(A X) - Ag(X,Y) + g([X, Y], A) + g([4, X].Y) — g([Y; A], X)
and
AD(X,Y,A) = XO(Y,A) - YO(X,A)+ AD(X,Y) — &([X,Y],A) — &([Y, A], X) + ®([X, A],Y).
Therefore,

29((VxJ)Y, A)= 2g(Vx JY, A) 4 2g(Vx Y, JA)
= Xg(JyvA) + JYg(AvX) _g(XJY) +g([X7 JY]aA) +g([A7X]aJY) _g([JY7A]7X)
+Xg(Y,JA)+Yg(JA, X)—JAg(X,Y)+g([X,Y], JA)+9([JA, X],Y)—g([Y, JA], X)

= X%da(A, Y)+ JY[%da(JA, X) 4+ a(A)a(X)] — A%da(X, Y)%da(J[X, JY], A)
Fal(X, JY])a(4) + Lda([4, X],Y) = Lda(J[IY, 4], X) ~ a([JY, Aja(X)
+X%da(Y, )+ Y%da(X, A) - JA[%da(JX Y) + a(X)a(Y)] + %da([x Y], 4)
+%da(J[JA, X1,Y) + a([JA, X])a(Y) — %da(J[Y, JA], X) = a([Y, JA])a(X)

_ %da([A, Y], X) 4+ %da([JY, JAL X) + a([X, JY])a(A) + %da([JY, AL JX)
—a([JY, A])a(X) + JY [a(A)a(X)] = JA[a(X)a(Y)] + a([JA, X])a(Y)
+5da([Y, A TX) ~ a([Y, JAa(X)

- %da(—[Y, Al = J[JY, A] + [JY, JA] — JY, JA], X) + a(A)[a([X, JY]) + JY a(X)]

+a(X)[JYa(A)] — a([JY, A]) + a(Y)[e([JA, X]) — JA(a(X))]

—a(X)[JA(a(Y)) + a([Y, JA])]

= %da(N(l)(Y, A) —da(Y, A)Z, X) + da(JY, X )a(A)

+da(JY, A)a(X) — a(Y)da(JA, X) — a(X)da(JA,Y)
= g(NV(Y, A),JX) + da(JY, X)a(A) — da(JA, X)o(Y)

X
X

where N(V(Y, A) = [J, J](Y, A) + da(Y, A)Z. O

Theorem 2.6. On a contact metric manifold (M,«, Z, J, g), the structure is Sasakian if and only if the
identity (VxJ)Y =g(X,Y)Z —a(Y)X holds.

Proof.

[, J)(X,Y) = J[X,Y] + [JX, JY] - JJX,Y] — J[X, JY]
= J2(VxY — VyX) + VyxJY — VyyJX — J(VyxY — VyJX + VxJY — V. y X)
— JIVXY = VxJY) = J(JVy X = VyJX) 4+ VyxJY — IV xY — Vyy X + IV y X
=J(Vy )X = (VxJ)Y) + (VuxJ)Y — (VyyJ)X
— (JVyJ = Vyy )X — (JVxJ — VyxJ)Y
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Soif (VxJ)Y =¢(X,Y)Z — a(Y)X, then
[(LJ(X,Y) = JVy)X — (Vv )X —J(VxJ)Y + (VyxJ)Y
= J(—a(X)Y) - (—a(X)JY —JY) - J(—a(Y)X) + (—a(Y)JX) — a(X)JY
Fa(X)JY + a(Y)JX — a(Y)JX — g(X, JY)Z + g(Y, JX)Z
= (¥, JX)-g(X,JY))Z
— da(Y,X)Z
So [J,J](X,Y) +da(X,Y)Z =0and (M,«, Z,J,g) is Sasakian.

Conversely, we show that the Sasakian condition implies the identity (VxJ)Y = ¢(X,Y)Z —a(Y)X.
Earlier, we proved the following identity:

20((Vx )Y, A) = g(NO(Y, A), JX) + da(JY, X)a(A) — da(JA, X)a(Y).
So if the structure is Sasakian, then
29(Vx )Y, 4) = 29(JY,JX)g(Z,A) —29(JA,JX)g(Z,Y)
= 2(9(Y, X) —a(Y)a(X))g(Z, A) — 2(9(A, X) — a(A)a(X))g(Z,Y)
= 29(X,Y)g(Z,A) —29(A, X)g(Z,Y) + 20(A)a(X)a(Y) — 2a(Y)a(X)a(A)
= 29X, Y)Z -g(Z,Y)X, A)
Therefore (VxJ)Y = ¢g(X,Y)Z — a(Y)X as desired. O

2.3 The standard sasakian structure on S?*+!

Let S?"+! be the unit sphere in C™*! with v as outer unit normal : i: $2"T1 — C*+!, v = Ji £ for some
tangent vector £. Define ¢ and n by Ji, X = i,¢X + n(X)v. Applying J again,
—i, X = 1,0’ X + n(o(X)v — n(X)i,E.

Hence, ¢> = —1 +n® € and no ¢ = 0. From Ji.& = i.¢¢ + n(€)v, we deduce that v = i,¢¢ + n(¢)v and
hence, ¢¢ = 0 and (&) = 1. Therefore, (¢,£,n) is an almost contact structure.
Denoting by § the standard metric on C**! and g = i*g, then

9(X,Y) = g(Ji. X, Ji,Y) = g(¢X, ¢Y) + n(X)n(Y).
This shows that (¢,€,n,9) is an almost contact metric structure on the unit sphere. Denoting by v the
outward unit vector field along the sphere and by V the covariant derivative in Euclidean space, we recall
that the second fundamental form o of the unit sphere is given by: o(X,Y) = —¢(X,Y)r and Vxv = X.
One has then:
0 = (VxJ)Y
Vx (oY +n(Y)v) = J(VxY —g(X,Y)v)
= VxoV —g(X, Y )v + (Xn(Y))y + n(Y)X — ¢VxY —n(VxY)r — g(X,Y)¢
= (Vx9)Y —g(X,Y)E+n(Y)X + ((Vxn)(Y) — g(X, ¢Y))v
Taking the tangential part, we see that (Vx¢)Y = ¢(X,Y){ — n(Y)X. Hence we will prove that the
structure isl Sasakian as soon as we show that 7 is in fact a contact form.
Setting Y = £ gives —¢Vx& = n(X)€ — X, hence Vx& = —¢X. Therefore:
dn(X,Y) = Xn(Y)—Yn(X)—-n(X,Y])
= g(VXf,Y) - g(vyva)
= g9(—=0X,Y)+g(¢Y, X)
= 29(X,9Y)

showing that 7 is a contact form.
The above construction extends to hypersurfaces in Kahler manifolds, as stated in the following result
of Tashiro [8].
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Theorem 2.7. Let M?"*! be a hypersurface of a Kahler manifold M?" 2. Then the induced almost
contact metric structure (¢,&,m,g) is Sasakian if and only if the second fundamental form o satisfies:

= (—g+ B(n®n))v for some function B.

3 Topology of sasakian manifolds

The above theorem indicate the strong possibility of characterizing Sasakian structures by curvature
tensors. The following proposition contains a curvature characterization of Sasakian structures analogous
to the K-contact version found in Proposition 2.3.

Proposition 3.1. A contact metric structure is Sasakian if and only if the following identity holds:
RX,Y)Z =o)X —a(X)Y
Proof. By Theorem 2.6, the Sasakian condition implies

R(X,Y)Z = VxVyZ-VyVxZ-VixyZ
= —VxJY +VyJX + J[X,Y]
—(VxJ)Y —JVXY + (Vy )X + JVy X + J[X,Y]
—(VxJ)Y + (VyJ)X
—g(X,V)Z 4+ a(Y)X + g(X,Y)Z — a(X)Y
= a(V)X — a(X)Y

Next we prove R(X,Y)Z = a(Y)X — a(X)Y implies that the structure is Sasakian. Letting Y = Z
in the above identity shows that each sectional curvature including the Reeb field Z is equal to one, a
necessary and sufficient condition for K-contactness. (See [1]). Next, the K-contact condition implies
(VxJ)Y = R(Z, X)Y (See Proposition 2.3). Therefore,

9((Vx )Y, A)

9(R(Z, X)Y,

Z,X)Y, A)
g(R(Y, A)Z X)

(
(
= g(a(A)Y —a(Y)A, X)
(
(

9(X, )(Z A) 9(Z,Y)g(X, A)
= 9(9(X,Y)Z —a(Y)X, A)

So (VxJ)Y =g(X,Y)Z — a(Y)X O

3.1 The k-nullity distribution

A sub-manifold N in a contact manifold (M, «, Z, J) is said to be invariant if Z is tangent to N and
JX is tangent to N whenever X is. An invariant submanifold is of course a contact submanifold. For a
real number k, the k-nullity distribution of a Riemannian manifold (M, g) is the subbundle N (k) defined
at each point p € M as follows: N,(k) = {H € T,M : R(X,Y)H = k(9(Y,H)X — g(X,H)Y}, for any
X,Y € T,M. Proposition 3.1 says that a contact metric structure is Sasakian if and only if its Reeb
vector field belongs to the 1-nullity distribution. If H # 0 is in N(k), then the sectional curvatures of all
plane sections containing H are equal to k. The distribution N (k) is known to be integrable with totally
geodesic leaves of constant curvature k. Hence, if k& > 0 and the dimension of N (k) is > 1, then each
leaf of N (k) is a compact submanifold. We refer to [4] for the proof of the following result about the
dimension of the 1-nullity distribution’s leaves.

Theorem 3.2. On a closed Sasakian 2n + 1-dimensional manifold, the dimension of N(1) is either less
or equal to n, or it is equal to 2n + 1.
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3.2 The angle function on K-contact manifolds

Suppose U is a horizontal Killing vector field on a Sasakian manifold. Then JU is a Killing vector field
which is a section of the 1-nullity distribution, hence U itself belongs to the 1-nullity distribution since the
later is totally geodesic and —JU = Vy Z. The proof of this fact can be found in [3]. As a consequence
of this result:

Proposition 3.3. If X is a Killing non-vertical vector field on a Sasakian manifold (M,a,Z,J) and
[X,Z] =0, then g(X,Z) cannot be constant.

Proof. Suppose g(X, Z) is constant. Then X = ¢g(X, Z)Z + B with B horizontal Killing and VB = JB.
Therefore [X,Z] =VxZ - VzX =—-JB - JB #0. O

3.3 Perturbation of Sasakian structures

Proposition 3.4. Let (o, Z,J,g) be K-contact structure tensors on a manifold M. Let U be a Killing
vector field such that [U,Z] = 0, Ly = 0 and o(U) > 0. Then the vector field U is the characteristic
vector field of a K-contact form B on M. Moreover, if a is a sasakian form, then so is 3.

Proof. Define new structure tensors : § = ﬁ; for any vector fields X and Y on M, ¢ X = J(X—3(X)U)
and b(X,Y) = ﬁg(){ —BX)U,Y —B(Y)U)+ B(X)B(Y). We will verify that (8, U, ¢,b) are K-contact
structure tensors. S is obviously a contact form and S(U) =1 = b(U,U).
¢$’X = ¢[JX - B(X)JU]
= JX - B(X)J?U
= —X+aoX)Z-8(X)[-U+aU)Z]

= X+ BX)U+a(X)Z - Z‘(é))a(U)Z
= —X+B(X)U.
Also
wdf = ivd( )
‘ 1 1
= ZU[—WdZUOé Ao+ mda]
. 1 . 1
= ZU[szda ANa+ mda}

a(U) . 1 .
———Ziyd ——iyda = 0.

a(U)QZU o+ a(U)zU o
This shows that U is the characteristic vector field of 5. Next, we verify that b is a contact metric adapted
to 8 and ¢.

b(X,pY) = ﬁg(X—B(X)UﬁY)
- a(lwg(X,JY)—ﬁ(Y)JU)—i(()U())g(XJY—B(X)JU)
! B(Y) B(X)
= mg(X,JY)—mg(X,JU)—mg(Uﬂ]Y)
1 a(Y) 1 a(X) 1
= @ida(X’ Y) - a(0)? 5da(X, U)-— a(U)2§da(U’ Y)
= %%da(X, Y)+ %ﬁwda Na(X,Y)
1,1 1
= Gt gy A X Y)
_ %dﬂ(XJ/)
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Finally, since Lya = 0 and [U, Z] = 0, we have automatically Lyb = 0 in view of the definition of b.
Hence g is a K-contact form. Now, assuming that J is normal, that is, for any tangent vector fields X
and Y, [J,J)(X,Y) 4+ da(X,Y)Z = 0, let X and Y satisfy 3(X) = 0 = B(Y) first. On those kind of
vector fields, it is clear that ¢ and J coincide. Therefore,

[6,0)(X,Y) +dB(X,YV)U = ¢*([X,Y])+[6X,¢Y] — ¢[¢X, Y] — ¢ X, ¢Y] + dB(X,Y)U
= —[X,Y]+[JX,JY] - ¢[JX,Y] - ¢[X, JY]
= —[X,Y]+[JX,JY] - JJX,Y] - J[X,JY] + (B(JX,Y] + [X,JY))JU

— [LJXY) 4 da(X,Y)Z + ﬁa([JX, Y] + [X,JY])JU =0

Next, we compute [¢, ¢](X,U), using the fact that U preserves J in the process.

[¢7¢](X7U) = _[XvU]"_ﬁ([XvUDU_(b[JX’U]
= —[X,U]l+J*[U,X]=0.

Since obviously, [¢,¢](U,U) + d3(U,U) = 0, we conclude from the above calculations that ¢ is also
normal, hence § is a sasakian form. O

3.4 Basic cohomology

By C¥(Z) we denote the spaces of closed, basic p-forms on a contact manifold (M,«, Z). A p-form w is
said to be basic if w(Z, X1, ..., X,,—1) = 0 for any p — 1 vector fields X3, ..., X,,_1 and Lzw = 0. A p-form
w will be said to be basic exact if w is basic and w = du where u is a basic p — 1-form. We denote by
B} (Z) the space of basic exact p-forms on M. The p-th basic cohomology group H} (Z) of (M,«, Z) is
defined to be the quotient HY (Z) = C}(Z)/BL(Z).

Lemma 3.5. Let 1 be a harmonic 1-form on a K-contact manifold (M, o, Z,J,g). Then p is a basic
1-form.

Proof. Denote by v; the 1-parameter group of isometries generated by Z. Since harmonic forms pull
back into harmonic forms under isometries, we have that for all ¢, ¢y is a harmonic 1-form which is
co-homologous to p, hence, by Hodge’s Decomposition Theorem, ¥;u = u for all ¢. As a consequence

Lzu = Yip = 0. Since Lzp = izdu + dizp = d(pu(2)), it follows that u(Z) is constant. We need

dt |i=0
to prove that u(Z) = 0. Suppose on the contrary that pu(Z) = k where k is a nonzero constant. Let
8= %u. The 1-form § is a harmonic, nonsingular 1-form with 5(Z) = 1. The 1-form v = o — 3 satisfies
da. = dry, hence a volume form for M is given by:

aA(da)* =aNdyA(da)" = —d(a Ay A (da)" ™t +da Ay A (da)" L.

The form da Ay A (da)"~! is a basic, 2n + 1-form,hence is is identically zero. We have reached the
contradiction that the volume form a A (da)™ is exact on a closed manifold M and the proof of the lemma
is complete. O

Proposition 3.6. The first basic co-homology group H} (Z) of a closed K-contact manifold (M, Z, J, g)
is isomorphic with the first DeRham co-homology group H'(M).

Proof. The natural map H}(Z) — H'(M) is injective. Indeed, any basic 1-form 7 = df represents a zero
basic co-homology class, that is, 7 is basic exact due to the fact that df (Z) = 0 if and only if f is constant
along Z. By a previous lemma, any harmonic 1-form g on M is basic. This provides an injective linear
map H'(M) — H}(Z) which must be an isomorphism. O

On compact Sasakian M?"*!| the Betti numbers B, are known to be even for odd p, 1 < p < n [7].
As a consequence, S' x S?" and odd-dimensional tori carry no Sasakian structures. As a consequence of
Proposition 3.6, we can extend this statement to K-contact manifolds as follows.

Corollary 3.7. No torus T?"*! carries a K-contact form.
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Properties of K-contact manifolds

In [2], Blair and Goldberg showed that on a compact Sasakian manifold M?"+1, there are no nonzero
parallel p-forms for 1 < p < 2n. This result extends to K-contact manifolds. First, as a consequence of
Proposition 3.6, one has the

Proposition 3.8. On a closed K-contact manifold, there can be no nonzero parallel 1-form.

Proof. Let U be a parallel vector field. Then U is harmonic, [U, Z] = 0 and U is horizontal Killing, which
is a contradiction to Proposition 3.3. O

Next, it is also easily extended to 2-forms as follows.
Proposition 3.9. There cannot be any non-trivial parallel 2-form on a closed K-contact manifold.

Proof. First observe that Lzu = 0 for any harmonic (2-) form. Next, from
0="L.u(A,2)=Z(A Z) — (2, A, Z) = n(VaZ,Z) = —u(JA, Z)
we deduce that izp = 0 ; that is p is basic. Next, for any A ,B,
0=Bu(Z,A) = u(VpZ,A) +u(Z,VpA) = —u(JB, A).
We see that ¢ must be identically zero. O

This result follows also from the work of Sharma [6]. More generally, on K-contact manifolds, closed
or not, parallel forms can only be found in degrees 0 and 2n+1, as stated in the following theorem which
was proved in [5].

Theorem 3.10. On a K-contact manifold M?"*' with K-contact form 1 and Reeb field Z, there are no
nonzero parallel p-forms for 1 < p < 2n.
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