
Journal de la Faculté des Sciences etTechnologies
Volume 11, Numéro 2, pp. 23�33 (2015)

Properties of K-contact manifolds

Propriétés des variétés de K-contact

Philippe Rukimbira ∗

Abstract

This paper is a survey of some of the author's results on K-contact manifolds. More results from

others have also been included as far as they are related to the author's own results.
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Résumé

Cet article est un passage en revue de certains résultats de l'auteur sur les variétés de K-contact.

D'autres résultats de di�érents auteurs ont été ajoutés à mesure qu'ils sont reliés à ceux de l'auteur.

Mots clés : K-contact, Sasakienne.

1 Introduction

The paper is organized as follows. In section 2, we deal with preliminaries on contact metric structures,
including some constructions of contact metrics. Section 3 includes some curvature characterization
of Sasakian structures. The 1-nullity distribution is introduced and a description provided for its leaf
dimension on Sasakian manifolds. The angle function is also de�ned. This function is somehow involved
in the description of the �rst basic cohomology on K-contact manifolds, leading to the nonexistence results
for K-contact structures on odd-dimensional tori and parallel 1-forms on K-contact manifolds. The most
general result about nonexistence of parallel forms in K-contact geometry is stated without proof, which
uses more than just the angle function.

2 Preliminaries

A contact form on a 2n+ 1 dimensional manifold M is a 1-form α such that the identity α ∧ (dα)n 6= 0
holds everywhere onM . Given such a 1-form α, there is always a unique vector �eld Z satisfying α(Z) = 1
and iZdα = 0. The vector �eld Z is called the characteristic vector �eld of the contact manifold (M,α)
and the corresponding 1-dimensional foliation is called a contact �ow.

2.1 Examples of almost contact structures

We will give examples of contact forms since almost contact structures are always present whenever
contact forms are.

1. R2n+1 : α = dz −
∑n
i=1 y

idxi and Z = ∂
∂z .

2. The sphere S3 : on R4, with coordinates (x0, y0, x1, y1), consider ω0 = x0dy0−y0dx0+x1dy1−y1dx1.
Let η be the restriction of ω0 to S3. We claim that η ∧ dη 6= 0 on S3. Indeed,

η ∧ dη = 2(x0dy0 − y0dx0 + x1dy1 − y1dx1) ∧ (dx0 ∧ dy0 + dx1 ∧ dy1).
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Notice that the 1-form β = x0dx0 + x1dx1 + y0dy0 + y1dy1 is normal to S3 and easily,

β ∧ η ∧ dη = ((x0)
2

+ (x1)
2

+ (y0)
2

+ (y1)
2
)(dx0 ∧ dy0 ∧ dx1 ∧ dy1) 6= 0

along S3 which shows that η ∧ dη is nowhere zero on S3.

The above example generalizes to S2n+1 ⊂ R2n+2 with coordinates (x0, ..., xn, y0, ..., yn) and to
convex hypersurfaces in symplectic manifolds Σ → (M2n,Ω), LNΩ = Ω, where N represents the
outer unit normal vector �eld along Σ and Ω is the symplectic form on M .

3. Another example is T 3 with coordinates θ1, θ2, θ3 : η = cos θ3dθ1 + sin θ3dθ2.

The 2n dimensional distribution D(p) = {v ∈ TpM : α(p)(v) = 0}, which is invariant by Z, is called the
contact distribution. It carries a (1, 1) tensor �eld J such that −J2 is the identity on D. The tensor �eld
J extends to all of TM if one requires JZ = 0. Also, the contact manifold (M,α) carries a nonunique
Riemannian metric g adapted to α and J in the sense that the following identities are satis�ed for any
vector �elds X and Y on M .

g(X,Y ) = g(JX, JY ) + α(X)α(Y ) (1)

dα(X,Y ) = 2g(X,JY ) (2)

J2X = −X + α(X)Z; JZ = 0 (3)

Such a metric g is called a contact metric.
Our convention for the di�erential of a 1-form is as follows:

dα(X,Y ) = Xα(Y )− Y α(X)− α([X,Y ]).

2.2 Construction of contact metric structures

Given (M,α,Z), let g0 be any metric onM . Let g1 be the metric equal to g0 on D = kern α, g1(Z,Z) = 1
and g1(D,Z) = 0. One de�nes a skew symmetric tensor �eld A as follows: dα(X,Y ) = 2g1(AX,Y ) for
any sections X, Y of D. When restricted to D, A is clearly nonsingular. Let B =

√
AA∗, where A∗ is

the g1 adjoint of A. B is a symmetric, positive de�nite endomorphism of D which commutes with A and
A∗. On D, we now de�ne J = −B−1A. Clearly J2 = B−1AB−1A = B−2AA = A∗−1A = −A−1A = −Id
shows that J is an almost complex structure on D. Observe that J is g1-orthogonal. For horizontal X
and Y ,

g1(B−1AX,B−1AY ) = g1(AX,B−2AY )

= −g1(X,AB−2AY )

= −g1(X, J2Y )

= g1(X,Y )

We extend J by JZ = 0 and de�ne an intermediary metric g2 as follows:

g2(X,Y ) =
1

2
[g1(JX, JY ) + g1(J2X,J2Y )] + α(X)α(Y ).

Finally, a contact metric g is obtained as: g(X,Y ) = g2(BX,Y )+α(X)α(Y ). Using the identity J3 = −J ,
we will verify identities (1), (2) and (3). First,

g(JX, JY ) = g2(BJX, JY )

=
1

2
[g1(JBJX, J2Y ) + g1(J2BJX, J2JY )]

=
1

2
[g1(J2BX, J2Y ) + g1(JBX, JY )]

= g2(BX,Y ) = g(X,Y )− α(X)α(Y ).
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Next,

2g(X, JY ) = 2g2(BX, JY )

= g1(JBX, J2Y ) + g1(J2BX, J3Y )

= g1(AX,Y ) + g1(JAX, JY )

= g1(AX,Y ) + g1(AX,Y )

=
1

2
dα(X,Y ) +

1

2
dα(X,Y ) = dα(X,Y )

Finally, J2X = J2((X − α(X)Z) + α(X)Z) = −(X − α(X)Z) = −X + α(X)Z. It is easy to see that
LZα = 0 and LZdα = 0, but LZJ and LZg need not vanish!

Proposition 2.1. On a contact metric manifold (M,α, J, g), LZJ = 0 if and only if LZg = 0.

Proof.

LZg(X, JY ) = Zg(X, JY ) + g([Z,X], JY ) + g(X, (LZJ)Y ) + g(X, J [Z, Y ])

=
1

2
Zdα(X,Y )− g([Z,X], JY )− g(X, (LZJ)Y )− g(X, J [Z, Y ])

=
1

2
dα([Z,X], Y ) +

1

2
dα(X, [Z, Y ])− 1

2
dα([Z,X], Y )

−g(X, (LZJ)Y )− 1

2
dα(X, [Z, Y ])

= −g(X, (LZJ)Y )

Therefore, if LZg = 0, then (LZJ)Y = 0 for arbitrary Y . Conversely, suppose LZJ = 0. Then, from the
above observation, LZg(X,JY ) = 0 for any Y . We need to show that LZg(X,Z) = 0 for all X.

LZg(X,Z) = Zg(X,Z)− g([Z,X], Z)

= Zα(X)− g([Z,X], Z)

= α([Z,X])− α([Z,X]) = 0.

This completes the proof.

A contact metric structure on which LZJ = 0 is called a K-contact structure. From the above
proposition, the characteristic vector �eld of a K-contact metric structure is an in�nitesimal isometry,
also known as a Killing vector �eld.

Lemma 2.2. On a K-contact manifold (M,α,Z, J, g), one has ∇YZ=−JY , for all vector �eld Y on M .

Proof.

2g(X, JY ) = dα(X,Y ) = Xα(Y )− Y α(X)− α([X,Y ])

= Xg(Z, Y )− Y g(Z,X)− g(Z, [X,Y ])

= g(∇XZ, Y )− g(∇Y Z,X)

= −2g(X,∇Y Z).

So JY = −∇Y Z.

We shall adopt the convention R(X,Y )W = ∇X∇YW − ∇Y∇XW − ∇[X,Y ]W , for the Riemann
curvature tensor.

Proposition 2.3. On a K-contact manifold (M,α,Z, J, g), the following identity holds :

(∇XJ)Y = R(Z,X)Y. (4)
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Proof. Using the above lemma:

g(R(Z,X)Y,W ) = g(∇Z∇XY −∇X∇ZY −∇[Z,X]Y,W )

= g(∇Z∇XY −∇X [Z, Y ]−∇X∇Y Z −∇[Z,X]Y,W )

= g(∇XJY,W ) + g(∇Z∇XY,W )− g(∇X [Z, Y ],W )

−g(∇[Z,X]Y,W )

= g(∇XJY,W ) + Zg(∇XY,W )− g(∇XY,∇ZW )

−g(∇X [Z, Y ],W )− g(∇[Z,X]Y,W )

= g(∇XJY,W )− g(∇X [Z, Y ],W )

+g([Z,∇XY ],W )− g(J∇XY,W )− g(∇[Z,X]Y,W ).

Let ψt denote the 1-parameter group of isometries generated by Z. Then

[Z,∇XY ] = − d

dt |t=0
ψt∗∇XY = − d

dt |t=0
∇ψt∗Xψt∗Y

= ∇[Z,X]Y +∇X [Z, Y ].

Hence, the above calculation is continued as: g(R(Z,X)Y,W ) =g((∇XJ)Y,W ). Since W was arbitrary,
we conclude that R(Z,X)Y = (∇XJ)Y .

Given a contact metric structure (M,α,Z, J, g), consider the product manifold M ×R. A vector �eld
onM×R can be written as X+f d

dt where X is tangent toM , t is the coordinate on R and f is a smooth
function on M × R. We de�ne an almost complex structure φ on M × R by:

φ(X + f
d

dt
) = JX − fZ + α(X)

d

dt
.

If φ is a complex structure, we say that the contact structure (α,Z, J) is normal and the corresponding
contact metric structure is called Sasakian.

By a classic theorem of Newlander and Nirenberg, an almost complex structure φ of class C∞ is a
complex structure if and only if its Nijenhuis torsion [φ, φ] vanishes. The Nijenhuis torsion [T, T ] of a
tensor �eld T of type (1, 1) is a tensor �eld given by:

[T, T ](X,Y ) = T 2[X,Y ] + [TX, TY ]− T [TX, Y ]− T [X,TY ].

It can be directly veri�ed that

[T, T ](fX, Y ) = f [T, T ](X,Y ) and [T, T ](X +W,Y ) = [T, T ](X,Y ) + [T, T ](W,Y )

for any vector �elds X, Y , W and smooth function f . It is clear that the Nijenhuis torsion [φ, φ] of φ
vanishes if and only if [φ, φ](X,Y ) = 0 and [φ, φ](X, ddt ) = 0 for any vector �elds X and Y tangent to M .
First, we evaluate [φ, φ](X,Y ):

[φ, φ](X,Y ) = −[X,Y ] + [JX + α(X)
d

dt
, JY + α(Y )

d

dt
]

−φ[JX + α(X)
d

dt
, Y ]− φ[X, JY + α(Y )

d

dt
]

= −[X,Y ] + [JX, JY ] + (JXα(Y )− JY α(X))
d

dt

−φ[JX, Y ] + φ(Y α(X)
d

dt
)− φ[X, JY ]− φ(Xα(Y )

d

dt
)

= J2[X,Y ]− α([X,Y ])Z + [JX, JY ]− J [JX, Y ]

−J [X, JY ]− (α([JX, Y ]) + α([X,JY ])− JXα(Y )

+JY α(X)
d

dt
+ (Xα(Y )− Y α(X))Z

= [J, J ](X,Y ) + dα(X,Y )Z + (JXα(Y )− JY α(X)

−α([JX, Y ])− α([X, JY ]))
d

dt
.
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Next we evaluate [φ, φ](X, ddt ):

[φ, φ](X,
d

dt
) = [JX + α(X)

d

dt
,−Z]− φ[JX + α(X)

d

dt
,
d

dt
]− φ[X,−Z]

= −[JX,Z] + Zα(X)
d

dt
+ J [X,Z] + α([X,Z])

d

dt

= (LZJ)X + LZα(X)
d

dt
.

The identity LZα = 0 is valid on any contact structure, therefore, a contact structure is normal if and
only if the following 3 identities are satis�ed for any X and Y .

[J, J ](X,Y ) + dα(X,Y )Z = 0 (5)

JXα(Y )− JY α(X)− α([JX, Y ])− α([X, JY ]) = 0 (6)

(LZJ)X = 0 (7)

Proposition 2.4. Identity (5) implies identities (6) and (7). Therefore, a contact structure (α,Z, J) is
normal if and only if [J, J ](X,Y ) + dα(X,Y )Z = 0.

Proof. Setting Y = Z in (5),we obtain:

0 = [J, J ](X,Z) = J2[X,Z]− J [JX,Z]

= −[X,Z] + α([X,Z])Z − J [JX,Z]

= −[X,Z]− α([Z,X])Z + J(LZJ)X + J2[Z,X]

= J(LZJ)X.

Hence, applying J on both sides 0 = J2(LZJ)X = −(LZJ)X + α((LZJ)X)Z = −(LZJ)X. This proves
that (5) implies (7). To prove the implication (5)⇒(6), apply α to the identity

0 = [J, J ](JX, Y ) + dα(JX, Y )Z

= −J2[JX, JY ] + [J2X, JY ]− J [J2X,Y ]− J [JX, JY ] + dα(JX, Y )Z.

0 = α([J2X,Y ]) + dα(JX, Y )

= α([−X, JY ]) + α(X)α([Z, JY ])− JY α(X) + dα(JX, Y )

= −α([X, JY ])− JY α(X) + dα(JX, Y )

= −α([X, JY ])− JY α(X) + JXα(Y )− α([JX, Y ]).

This proves the implication (5)⇒ (6).

It follows from the above proposition that a Sasakian contact metric structure is K-contact. The
converse holds in dimension 3; that is,

Proposition 2.5. A K-contact 3-dimensional manifold is Sasakian.

Proof. Let Z,E, JE be a local adapted orthonormal frame �eld on a K-contact 3-dimensional manifold
(M,α,Z, J, g). In order to prove that the structure is Sasakian, it is enough to show that [J, J ](E,E) = 0,
[J, J ](E, JE) + dα(E, JE)Z = 0 and [J, J ](E,Z) = 0.

[J, J ](E,E) = −J [JE,E]− J [E, JE] = −J [JE,E] + J [JE,E] = 0

[J, J ](E, JE) + dα(E, JE)Z = J2[E, JE] + [JE, J2E]− J [E, J2E] + dα(E, JE)Z

= −[E, JE] + α([E, JE])Z − [JE,E]− α([E, JE])Z

= 0

[J, J ](E,Z) = J2[E,Z]− J [JE,Z] = −[E,Z] + α([E,Z])Z − J [JE,Z]

= −[E,Z] + J(LZJ)E + J2[Z,E]

= −[E,Z]− J2[E,Z] = 0.
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Recall on a K-contact manifold, (∇XJ)Y = R(Z,X)Y . More generally, for a contact metric structure
(J, Z, α, g), the covariant derivative of J is given by:

2g((∇XJ)Y,A) = g(N1(Y,A), JX) + dα(JY,X)α(A)− dα(JA,X)α(Y ).

Proof. Recall these identities:

2g(∇XY,A) = Xg(Y,A) + Y g(A,X)−Ag(X,Y ) + g([X,Y ], A) + g([A,X], Y )− g([Y,A], X)

and

dΦ(X,Y,A) = XΦ(Y,A)− Y Φ(X,A) +AΦ(X,Y )− Φ([X,Y ], A)− Φ([Y,A], X) + Φ([X,A], Y ).

Therefore,

2g((∇XJ)Y,A)= 2g(∇XJY,A) + 2g(∇XY, JA)

= Xg(JY,A) + JY g(A,X)− g(X.JY ) + g([X, JY ], A) + g([A,X], JY )− g([JY,A], X)

+Xg(Y, JA)+Y g(JA,X)−JAg(X,Y )+g([X,Y ], JA)+g([JA,X], Y )−g([Y, JA], X)

= X
1

2
dα(A, Y ) + JY [

1

2
dα(JA,X) + α(A)α(X)]−A1

2
dα(X,Y )

1

2
dα(J [X, JY ], A)

+α([X, JY ])α(A) +
1

2
dα([A,X], Y )− 1

2
dα(J [JY,A], X)− α([JY,A])α(X)

+X[
1

2
dα(Y,A)] + Y

1

2
dα(X,A)− JA[

1

2
dα(JX, Y ) + α(X)α(Y )] +

1

2
dα([X,Y ], A)

+
1

2
dα(J [JA,X], Y ) + α([JA,X])α(Y )− 1

2
dα(J [Y, JA], X)− α([Y, JA])α(X)

=
1

2
dα([A, Y ], X) +

1

2
dα([JY, JA], X) + α([X, JY ])α(A) +

1

2
dα([JY,A], JX)

−α([JY,A])α(X) + JY [α(A)α(X)]− JA[α(X)α(Y )] + α([JA,X])α(Y )

+
1

2
dα([Y, JA], JX)− α([Y, JA])α(X)

=
1

2
dα(−[Y,A]− J [JY,A] + [JY, JA]− J [Y, JA], X) + α(A)[α([X, JY ]) + JY α(X)]

+α(X)[JY α(A)]− α([JY,A]) + α(Y )[α([JA,X])− JA(α(X))]

−α(X)[JA(α(Y )) + α([Y, JA])]

=
1

2
dα(N (1)(Y,A)− dα(Y,A)Z,X) + dα(JY,X)α(A)

+dα(JY,A)α(X)− α(Y )dα(JA,X)− α(X)dα(JA, Y )

= g(N (1)(Y,A), JX) + dα(JY,X)α(A)− dα(JA,X)α(Y )

where N (1)(Y,A) = [J, J ](Y,A) + dα(Y,A)Z.

Theorem 2.6. On a contact metric manifold (M,α,Z, J, g), the structure is Sasakian if and only if the
identity (∇XJ)Y = g(X,Y )Z − α(Y )X holds.

Proof.

[J, J ](X,Y ) = J2[X,Y ] + [JX, JY ]− J [JX, Y ]− J [X, JY ]

= J2(∇XY −∇YX) +∇JXJY −∇JY JX − J(∇JXY −∇Y JX +∇XJY −∇JYX)

= J(J∇XY −∇XJY )− J(J∇YX −∇Y JX) +∇JXJY − J∇JXY −∇JY JX + J∇JYX
= J((∇Y J)X − (∇XJ)Y ) + (∇JXJ)Y − (∇JY J)X

= (J∇Y J −∇JY J)X − (J∇XJ −∇JXJ)Y
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So if (∇XJ)Y = g(X,Y )Z − α(Y )X, then

[J, J ](X,Y ) = J(∇Y J)X − (∇JY J)X − J(∇XJ)Y + (∇JXJ)Y

= J(−α(X)Y )− (−α(X)JY − JY )− J(−α(Y )X) + (−α(Y )JX)− α(X)JY

+α(X)JY + α(Y )JX − α(Y )JX − g(X, JY )Z + g(Y, JX)Z

= (g(Y, JX)− g(X, JY ))Z

= dα(Y,X)Z

So [J, J ](X,Y ) + dα(X,Y )Z = 0 and (M,α,Z, J, g) is Sasakian.
Conversely, we show that the Sasakian condition implies the identity (∇XJ)Y = g(X,Y )Z −α(Y )X.

Earlier, we proved the following identity:

2g((∇XJ)Y,A) = g(N (1)(Y,A), JX) + dα(JY,X)α(A)− dα(JA,X)α(Y ).

So if the structure is Sasakian, then

2g((∇XJ)Y,A) = 2g(JY, JX)g(Z,A)− 2g(JA, JX)g(Z, Y )

= 2(g(Y,X)− α(Y )α(X))g(Z,A)− 2(g(A,X)− α(A)α(X))g(Z, Y )

= 2g(X,Y )g(Z,A)− 2g(A,X)g(Z, Y ) + 2α(A)α(X)α(Y )− 2α(Y )α(X)α(A)

= 2g(g(X,Y )Z − g(Z, Y )X,A)

Therefore (∇XJ)Y = g(X,Y )Z − α(Y )X as desired.

2.3 The standard sasakian structure on S2n+1

Let S2n+1 be the unit sphere in Cn+1 with ν as outer unit normal : i : S2n+1 → Cn+1, ν = Ji∗ξ for some
tangent vector ξ. De�ne φ and η by Ji∗X = i∗φX + η(X)ν. Applying J again,

−i∗X = i∗φ
2X + η(φ(X)ν − η(X)i∗ξ.

Hence, φ2 = −I + η ⊗ ξ and η ◦ φ = 0. From Ji∗ξ = i∗φξ + η(ξ)ν, we deduce that ν = i∗φξ + η(ξ)ν and
hence, φξ = 0 and η(ξ) = 1. Therefore, (φ, ξ, η) is an almost contact structure.

Denoting by g̃ the standard metric on Cn+1 and g = i∗g̃, then

g(X,Y ) = g̃(Ji∗X, Ji∗Y ) = g(φX, φY ) + η(X)η(Y ).

This shows that (φ, ξ, η, g) is an almost contact metric structure on the unit sphere. Denoting by ν the
outward unit vector �eld along the sphere and by ∇̃ the covariant derivative in Euclidean space, we recall
that the second fundamental form σ of the unit sphere is given by: σ(X,Y ) = −g(X,Y )ν and ∇̃Xν = X.
One has then:

0 = (∇̃XJ)Y
= ∇̃X(φY + η(Y )ν)− J(∇XY − g(X,Y )ν)

= ∇XφY − g(X,φY )ν + (Xη(Y ))ν + η(Y )X − φ∇XY − η(∇XY )ν − g(X,Y )ξ

= (∇Xφ)Y − g(X,Y )ξ + η(Y )X + ((∇Xη)(Y )− g(X,φY ))ν

Taking the tangential part, we see that (∇Xφ)Y = g(X,Y )ξ − η(Y )X. Hence we will prove that the
structure isl Sasakian as soon as we show that η is in fact a contact form.

Setting Y = ξ gives −φ∇Xξ = η(X)ξ −X, hence ∇Xξ = −φX. Therefore:

dη(X,Y ) = Xη(Y )− Y η(X)− η([X,Y ])

= Xg(ξ, Y )− Y g(ξ,X)− g(ξ, [X,Y ])

= g(∇Xξ, Y )− g(∇Y ξ,X)

= g(−φX, Y ) + g(φY,X)

= 2g(X,φY )

showing that η is a contact form.
The above construction extends to hypersurfaces in Kahler manifolds, as stated in the following result

of Tashiro [8].
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Theorem 2.7. Let M2n+1 be a hypersurface of a Kahler manifold M̃2n+2. Then the induced almost
contact metric structure (φ, ξ, η, g) is Sasakian if and only if the second fundamental form σ satis�es:
σ = (−g + β(η ⊗ η))ν for some function β.

3 Topology of sasakian manifolds

The above theorem indicate the strong possibility of characterizing Sasakian structures by curvature
tensors. The following proposition contains a curvature characterization of Sasakian structures analogous
to the K-contact version found in Proposition 2.3.

Proposition 3.1. A contact metric structure is Sasakian if and only if the following identity holds:

R(X,Y )Z = α(Y )X − α(X)Y

Proof. By Theorem 2.6, the Sasakian condition implies

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

= −∇XJY +∇Y JX + J [X,Y ]

= −(∇XJ)Y − J∇XY + (∇Y J)X + J∇YX + J [X,Y ]

= −(∇XJ)Y + (∇Y J)X

= −g(X,Y )Z + α(Y )X + g(X,Y )Z − α(X)Y

= α(Y )X − α(X)Y

Next we prove R(X,Y )Z = α(Y )X − α(X)Y implies that the structure is Sasakian. Letting Y = Z
in the above identity shows that each sectional curvature including the Reeb �eld Z is equal to one, a
necessary and su�cient condition for K-contactness. (See [1]). Next, the K-contact condition implies
(∇XJ)Y = R(Z,X)Y (See Proposition 2.3). Therefore,

g((∇XJ)Y,A) = g(R(Z,X)Y,A)

= g(R(Y,A)Z,X)

= g(α(A)Y − α(Y )A,X)

= g(X,Y )g(Z,A)− g(Z, Y )g(X,A)

= g(g(X,Y )Z − α(Y )X,A)

So (∇XJ)Y = g(X,Y )Z − α(Y )X

3.1 The k-nullity distribution

A sub-manifold N in a contact manifold (M,α,Z, J) is said to be invariant if Z is tangent to N and
JX is tangent to N whenever X is. An invariant submanifold is of course a contact submanifold. For a
real number k, the k-nullity distribution of a Riemannian manifold (M, g) is the subbundle N(k) de�ned
at each point p ∈ M as follows: Np(k) = {H ∈ TpM : R(X,Y )H = k(g(Y,H)X − g(X,H)Y }, for any
X,Y ∈ TpM . Proposition 3.1 says that a contact metric structure is Sasakian if and only if its Reeb
vector �eld belongs to the 1-nullity distribution. If H 6= 0 is in N(k), then the sectional curvatures of all
plane sections containing H are equal to k. The distribution N(k) is known to be integrable with totally
geodesic leaves of constant curvature k. Hence, if k > 0 and the dimension of N(k) is > 1, then each
leaf of N(k) is a compact submanifold. We refer to [4] for the proof of the following result about the
dimension of the 1-nullity distribution's leaves.

Theorem 3.2. On a closed Sasakian 2n+ 1-dimensional manifold, the dimension of N(1) is either less
or equal to n, or it is equal to 2n+ 1.
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3.2 The angle function on K-contact manifolds

Suppose U is a horizontal Killing vector �eld on a Sasakian manifold. Then JU is a Killing vector �eld
which is a section of the 1-nullity distribution, hence U itself belongs to the 1-nullity distribution since the
later is totally geodesic and −JU = ∇UZ. The proof of this fact can be found in [3]. As a consequence
of this result:

Proposition 3.3. If X is a Killing non-vertical vector �eld on a Sasakian manifold (M,α,Z, J) and
[X,Z] = 0, then g(X,Z) cannot be constant.

Proof. Suppose g(X,Z) is constant. Then X = g(X,Z)Z+B with B horizontal Killing and ∇ZB = JB.
Therefore [X,Z] = ∇XZ −∇ZX = −JB − JB 6= 0.

3.3 Perturbation of Sasakian structures

Proposition 3.4. Let (α,Z, J, g) be K-contact structure tensors on a manifold M . Let U be a Killing
vector �eld such that [U,Z] = 0, LUα = 0 and α(U) > 0. Then the vector �eld U is the characteristic
vector �eld of a K-contact form β on M . Moreover, if α is a sasakian form, then so is β.

Proof. De�ne new structure tensors : β = α
α(U) ; for any vector �eldsX and Y onM , φX = J(X−β(X)U)

and b(X,Y ) = 1
α(U)g(X−β(X)U, Y −β(Y )U) +β(X)β(Y ). We will verify that (β, U, φ, b) are K-contact

structure tensors. β is obviously a contact form and β(U) = 1 = b(U,U).

φ2X = φ[JX − β(X)JU ]

= J2X − β(X)J2U

= −X + α(X)Z − β(X)[−U + α(U)Z]

= −X + β(X)U + α(X)Z − α(X)

α(U)
α(U)Z

= −X + β(X)U.

Also

iUdβ = iUd(
α

α(U)
)

= iU [− 1

α(U)2
diUα ∧ α+

1

α(U)
dα]

= iU [
1

α(U)2
iUdα ∧ α+

1

α(U)
dα]

= − α(U)

α(U)2
iUdα+

1

α(U)
iUdα = 0.

This shows that U is the characteristic vector �eld of β. Next, we verify that b is a contact metric adapted
to β and φ.

b(X,φY ) =
1

α(U)
g(X − β(X)U, φY )

=
1

α(U)
g(X, JY )− β(Y )JU)− β(X)

α(U)
g(X,JY − β(X)JU)

=
1

α(U)
g(X, JY )− β(Y )

α(U)
g(X, JU)− β(X)

α(U)
g(U, JY )

=
1

α(U)

1

2
dα(X,Y )− α(Y )

α(U)2
1

2
dα(X,U)− α(X)

α(U)2
1

2
dα(U, Y )

=
1

α(U)

1

2
dα(X,Y ) +

1

2

1

α(U)2
iUdα ∧ α(X,Y )

=
1

2
(

1

α(U)
dα+ d(

1

α(U)
) ∧ α)(X,Y )

=
1

2
dβ(X,Y ).
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Finally, since LUα = 0 and [U,Z] = 0, we have automatically LUb = 0 in view of the de�nition of b.
Hence β is a K-contact form. Now, assuming that J is normal, that is, for any tangent vector �elds X
and Y , [J, J ](X,Y ) + dα(X,Y )Z = 0, let X and Y satisfy β(X) = 0 = β(Y ) �rst. On those kind of
vector �elds, it is clear that φ and J coincide. Therefore,

[φ, φ](X,Y ) + dβ(X,Y )U = φ2([X,Y ]) + [φX, φY ]− φ[φX, Y ]− φ[X,φY ] + dβ(X,Y )U

= −[X,Y ] + [JX, JY ]− φ[JX, Y ]− φ[X, JY ]

= −[X,Y ] + [JX, JY ]− J [JX, Y ]− J [X, JY ] + (β([JX, Y ] + [X, JY ])JU

= [J, J ](X,Y ) + dα(X,Y )Z +
1

α(U)
α([JX, Y ] + [X, JY ])JU = 0

Next, we compute [φ, φ](X,U), using the fact that U preserves J in the process.

[φ, φ](X,U) = −[X,U ] + β([X,U ])U − φ[JX,U ]

= −[X,U ] + J2[U,X] = 0.

Since obviously, [φ, φ](U,U) + dβ(U,U) = 0, we conclude from the above calculations that φ is also
normal, hence β is a sasakian form.

3.4 Basic cohomology

By Cp
b(Z) we denote the spaces of closed, basic p-forms on a contact manifold (M,α,Z). A p-form ω is

said to be basic if ω(Z,X1, ..., Xp−1) = 0 for any p− 1 vector �elds X1, ..., Xp−1 and LZω = 0. A p-form
ω will be said to be basic exact if ω is basic and ω = dµ where µ is a basic p − 1-form. We denote by
Bp
b(Z) the space of basic exact p-forms on M . The p-th basic cohomology group Hp

b (Z) of (M,α,Z) is
de�ned to be the quotient Hp

b (Z) = Cp
b(Z)/Bp

b(Z).

Lemma 3.5. Let µ be a harmonic 1-form on a K-contact manifold (M,α,Z, J, g). Then µ is a basic
1-form.

Proof. Denote by ψt the 1-parameter group of isometries generated by Z. Since harmonic forms pull
back into harmonic forms under isometries, we have that for all t, ψ∗t µ is a harmonic 1-form which is
co-homologous to µ, hence, by Hodge's Decomposition Theorem, ψ∗t µ = µ for all t. As a consequence

LZµ =
d

dt |t=0
ψ∗t µ = 0. Since LZµ = iZdµ + diZµ = d(µ(Z)), it follows that µ(Z) is constant. We need

to prove that µ(Z) = 0. Suppose on the contrary that µ(Z) = k where k is a nonzero constant. Let
β = 1

kµ. The 1-form β is a harmonic, nonsingular 1-form with β(Z) = 1. The 1-form γ = α− β satis�es
dα = dγ, hence a volume form for M is given by:

α ∧ (dα)n = α ∧ dγ ∧ (dα)n−1 = −d(α ∧ γ ∧ (dα)n−1 + dα ∧ γ ∧ (dα)n−1.

The form dα ∧ γ ∧ (dα)n−1 is a basic, 2n + 1-form,hence is is identically zero. We have reached the
contradiction that the volume form α∧(dα)n is exact on a closed manifoldM and the proof of the lemma
is complete.

Proposition 3.6. The �rst basic co-homology group H1
b (Z) of a closed K-contact manifold (M,α,Z, J, g)

is isomorphic with the �rst DeRham co-homology group H1(M).

Proof. The natural map H1
b (Z)→ H1(M) is injective. Indeed, any basic 1-form η = df represents a zero

basic co-homology class, that is, η is basic exact due to the fact that df(Z) = 0 if and only if f is constant
along Z. By a previous lemma, any harmonic 1-form µ on M is basic. This provides an injective linear
map H1(M)→ H1

b (Z) which must be an isomorphism.

On compact Sasakian M2n+1, the Betti numbers Bp are known to be even for odd p, 1 ≤ p ≤ n [7].
As a consequence, S1 × S2n and odd-dimensional tori carry no Sasakian structures. As a consequence of
Proposition 3.6, we can extend this statement to K-contact manifolds as follows.

Corollary 3.7. No torus T 2n+1 carries a K-contact form.
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In [2], Blair and Goldberg showed that on a compact Sasakian manifold M2n+1, there are no nonzero
parallel p-forms for 1 ≤ p ≤ 2n. This result extends to K-contact manifolds. First, as a consequence of
Proposition 3.6, one has the

Proposition 3.8. On a closed K-contact manifold, there can be no nonzero parallel 1-form.

Proof. Let U be a parallel vector �eld. Then U is harmonic, [U,Z] = 0 and U is horizontal Killing, which
is a contradiction to Proposition 3.3.

Next, it is also easily extended to 2-forms as follows.

Proposition 3.9. There cannot be any non-trivial parallel 2-form on a closed K-contact manifold.

Proof. First observe that LZµ = 0 for any harmonic (2-) form. Next, from

0 = Lzµ(A,Z) = Zµ(A,Z)− µ([Z,A], Z) = µ(∇AZ,Z) = −µ(JA,Z)

we deduce that iZµ = 0 ; that is µ is basic. Next, for any A ,B,

0 = Bµ(Z,A) = µ(∇BZ,A) + µ(Z,∇BA) = −µ(JB,A).

We see that µ must be identically zero.

This result follows also from the work of Sharma [6]. More generally, on K-contact manifolds, closed
or not, parallel forms can only be found in degrees 0 and 2n+1, as stated in the following theorem which
was proved in [5].

Theorem 3.10. On a K-contact manifold M2n+1 with K-contact form η and Reeb �eld Z, there are no
nonzero parallel p-forms for 1 ≤ p ≤ 2n.
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