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Résumé

Le propos de cet article est d'énoncer des critères de contrôlabilité pour les systèmes linéaires

sur les groupes Heisenberg généralisés. Plusieurs conditions su�santes de contrôlabilité sont établies,

et une étude de l'obstruction à la contrôlabilité est menée. Nous introduisons la notion de systèmes

découplés dans le groupe Heisenberg de dimension cinq et nous obtenons des conditions nécessaires

et su�santes de contrôlabilité pour ces systèmes.
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Abstract

This paper is intended to state controllability results for linear systems on generalized Heisenberg

groups. Several su�cient controllability conditions are provided, and obstruction to controllability

is studied. We introduce the notion of decoupled systems on the �ve dimensional Heisenberg group.

Necessary and su�cient controllability conditions are obtained for these systems.
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1 Introduction

In this paper we are interested in controllability properties of linear systems on generalized Heisenberg
groups, which are controlled systems

(Σ) ġ = X(g) +

m∑
j=1

ujBj(g)

where X is a linear vector �eld, that is a vector �eld whose �ow is a one-parameter group of automorphisms,
and the Bj 's are right-invariant. Controllability means that for any pair {g, g′} of points there exist a
time T and a control function t 7−→ u(t) on [0, T ] such that the solution of (Σ) for this control function
and for the initial point g reaches g′ at time T . It is one of the main issues of geometric control theory
because many other topics of this area only make sense for controllable systems.

The present paper follows and generalizes [2] where necessary and su�cient controllability conditions
on the 2-dimensional a�ne group and the 3-dimensional Heisenberg group were stated. On generalized
Heisenberg group we do not obtain such general necessary and su�cient conditions, but a series of
su�cient ones and some obstruction criteria. However we were able to exhibit necessary and su�cient
controllabilty conditions for decoupled systems in H2 (see Section 6).
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2 Basic de�nitions. Properties of linear systems

More details about linear vector �elds and linear systems can be found in [4] and [5].
Let G be a connected Lie group and g its Lie algebra (the set of right-invariant vector �elds, identi�ed

with the tangent space at the identity). A vector �eld on G is said to be linear if its �ow is a one-parameter
group of automorphisms. Linear vector �elds can also be characterized as follows : A vector �eld X on a
connected Lie group G is linear if and only if it belongs to the normalizer of g in the algebra of analytic
vector �elds of G (that is ∀Y ∈ g, [X, Y ] ∈ g) and veri�es X(e) = 0. On account of this characterization,
one can associate to a linear vector �eld X the derivation D = −ad(X) of the Lie algebra g of G. The
minus sign in this de�nition comes from the formula [Ax, b] = −Ab in Rn. It also enables to avoid a minus
sign in the useful formula :

∀Y ∈ g, ∀t ∈ R ϕt(expY ) = exp(etDY ). (1)

Throughout the paper the �ow of a linear vector �eld X will be denoted by (ϕt)t∈R.

De�nition 1. A linear system on a connected Lie group G is a controlled system

(Σ) ġ = X(g) +

m∑
j=1

ujBj(g)

where X is a linear vector �eld and the Bj's are right-invariant ones. The control u = (u1, . . . , um) takes
its values in Rm.

An input u being given (measurable and locally bounded), the corresponding trajectory of (Σ) star-
ting from the identity e will be denoted by eu(t), and the one starting from the point g by gu(t). A
straightforward computation shows that gu(t) = eu(t)ϕt(g).

We denote by A(g, t) = {gu(t); u ∈ L∞[0, t]} (resp. A(g,≤ t)) (resp. A(g)) the reachable set from g in
time t (resp. in time less than or equal to t) (resp. in any time). In particular the reachable sets from the
identity e are denoted by At = A(e, t) = A(e,≤ t) and A = A(e). We also note A− = {g ∈ G; e ∈ A(g)}
the set of points from which the identity can be reached. It is equal to the attainability set from the
identity for the time-reversed system. Notice that (Σ) is controllable if and only if A = A− = G. Now we
analyze the rank condition, which is a very well-known necessary condition for controllability. Consider
the Lie algebra generated by all the vector �elds of the system. We recall that the rank condition means
that the rank of that Lie algebra is equal to the dimension of the state space at all points.

Let V stand for the subspace of g generated by {B1, . . . , Bm}, let us denote by DV the smallest
D-invariant subspace of g that contains V , i.e. DV = Span{DkY ; Y ∈ V and k ∈ N}, and let LA(DV )
be the g subalgebra generated by DV (as previously D = −ad(X)).

Proposition 1. The subalgebra LA(DV ) of g is D-invariant. The system Lie algebra L is therefore equal
to RX⊕ LA(DV ), and the rank condition is satis�ed if and only if LA(DV ) = g.

Let h be the subalgebra of g generated by {B1, . . . , Bm}. It is a well known fact that we can replace
the system by the extended one

(Σ̃) ġ = X(g) +

p∑
j=1

ujB̃j(g),

where B̃1, . . . , B̃p is a basis of h, without modifying the closures of the sets A(g,≤ t). It also well known
that a system is locally controllable at an equilibrium point as soon as the linearized system is controllable
(see [7] for instance). In this assertion "locally controllable" at a point g means that the set A(g,≤ t) is
a neighbourhood of g for all t > 0. This leads to the following de�nition.

De�nition and Proposition 2. System (Σ) is said to satisfy the ad-rank condition if Dh = g, in other

words if the linearized system of (Σ̃) is controllable. In that case the reachable set At is a neighbourhood
of e for all t > 0.
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2.1 Controllability and quotient groups

The following propositions 3 and 4 concern closed subgroups and quotients. They are proved in [2]
and of constant use in our approach.

Proposition 3. Let H be a closed subgroup of G, globally invariant under the �ow of X. The system (Σ)
on G, assumed to satisfy the rank condition, is controllable if and only if both conditions hold :

1. the system induced on G/H is controllable ;

2. the subgroup H is included in the closures A and A− of A and A−.

Proposition 4. Let us assume that H is a connected and closed subgroup of G and that the restriction
of X to H vanishes. Then H is included in A (resp. in A−) if and only if A ∩ H(resp. A− ∩ H) is a
neighbourhood of e in H.

Singular and regular systems. The linear systems for which X vanishes on a connected, closed and
X-invariant (non trivial) subgroup will be referred to as singular systems, the other ones being regular.
The previous proposition 4 is crucial in the singular case.

3 Controllability in H1

The reader is referred to the next section for the de�nition of H1.
We summarize here the main results of [2]. A one input system is equivalent by automorphism to a

system in "normal form" in the canonical basis, that is : (Σ) ġ = X(g)+uX(g) whereD =

0 b 0
1 d 0
0 f d


is the matrix in the basis (X,Y, Z) of the derivation associated to X. Notice that the controlled vector
�eld is the �rst element of that basis. The main result of [2], is the following.

Theorem 1. A system in normal form is controllable if and only if one of the following conditions hold :

(i) b < −d2

4
,

(ii) d = 0 and f 6= 0,

Let us denote by (L) the classical linear system

(L) =

{
ẋ = by + u
ẏ = x + dy

induced on the quotient G/Z(G). The eigenvalues of the matrix

(
0 b
1 d

)
are real if and only if b ≥ −d2

4
.

On the other hand (Σ) is singular if and only if d = 0 and the ad-rank condition is satis�ed if and only
if f 6= 0. Consequently Theorem 1 can be restated as :

Theorem 2. The one-input system (Σ) on the Heisenberg group is controllable if and only if it satis�es
the rank condition and

(i) in the regular case : the eigenvalues of (L) are not real ;

(ii) in the singular case : the eigenvalues of (L) are not real or the ad-rank condition is satis�ed.

4 Linear Systems on Hn

The generalized Heisenberg group Hn is the (2n + 1)-dimensional matrix subgroup of GL(n + 2,R)
whose elements have the form :

1 y1 y2 ... yn z
0 1 0 ... 0 x1

0 0 1 .... 0 x2

. . . . . .

. . . . . .
0 0 0 ... 1 xn

0 0 0 ... 0 1


xi, yi, z ∈ R.
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Its Lie algebra hn is generated by the 2n + 1 right-invariant vector �elds X1, . . . , Xn, Y1, . . . , Yn, and Z
de�ned by  Xi = Ei+1,n+2 1 ≤ i ≤ n

Yi = E1,i+1 + xiE1,n+2 1 ≤ i ≤ n
Z = E1,n+2

where Eij is the matrix whose all entries vanish, excepted the rank i and column j one which is equal
to 1. In canonical coordinates these vector �elds write :

Xi =
∂

∂xi
, Yi =

∂

∂yi
+ xi

∂

∂z
, Z =

∂

∂z
(2)

4.1 Symplectic basis

The basis of hn de�ned above satis�es the following Lie bracket relations :

[Xi, Yi] = YiXi −XiYi = Z for i = 1, . . . , n (3)

and all the other brackets vanish. In particular the center of hn is generated by the �eld Z, and is
equal to the derived algebra D1hn. In what follows any basis (X1, Y1, . . . , Xn, Yn, Z) of hn that satisfy
the relations (3) will be referred to as a symplectic basis. The importance of such basis comes from the
following proposition.

Proposition 5.

1. If X ∈ hn \D1hn then there exists a symplectic basis such that X = X1.

2. If X,Y ∈ hn and [X,Y ] 6= 0 then there exists a symplectic basis such that X = X1 and Y = Y1.

3. If B1, . . . , Bm are linearly independant in hn/D1hn and [Bi, Bj ] = 0 for all i, j = 1, · · · ,m, then
there exists a symplectic basis such that Bi = Xi for i = 1, · · · ,m.

To any symplectic basis we can associate a coordinate system in which the vector �elds of the basis
write like in (2). We make a constant use of these coordinates in the sequel.

4.2 Derivations and linear �elds on hn

In this section we compute the derivations and linear vector �elds oh Hn.

Proposition 6. An endomorphism D of hn is a derivation if and only if its matrix in any symplectic
basis has the following form : 

A11 −ÃT
21 ... −ÃT

n1 0

A21 A22 ... −ÃT
n2 0

. . . . .
An1 An2 ... Ann 0

a2n+1,1 a2n+1,2 ... a2n+1,2n d


where the Aij's are 2× 2 matrices, ÃT

ij stands for the transpose of the comatrix of Aij, and tr(Aii) = d
for 1 ≤ i ≤ n.

In order to compute the linear vector �eld associated to a derivation D the elements of hn will be

denoted by A =

0 yA zA
0 0 xA

0 0 0

 where xA = (x1, . . . , xn) and yA = (y1, . . . , yn) belong to Rn.

The canonical scalar product of Rn will be denoted by 〈, 〉, so that if B is another element of hn then
the matricial product AB writes merely : AB = 〈yA, xB〉Z. Notice also that the elements of Hn have the
form g = I + G, where I is the identity matrix of size n + 2 and G belongs to hn (but I + G is not equal
to exp(G)).
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Proposition 7. Let D be a derivation of hn. It is associated to a unique linear vector �eld X of Hn, and
X is equal, at the point g = I + G of Hn to :

X(g) = DG− 1

2
dG2 +

1

2
(G(DG) + (DG)G) = DG +

1

2
(〈y, x〉+ 〈x, y〉 − d〈x, y〉)Z.

where d is de�ned by DZ = dZ.

Proposition 7 shows that the vector �eld X is composed of a linear part DG and a quadratic one in
the 2n variables x1, y1, . . . , xn, yn, but that only the last coordinate z depends on the quadratic part.

5 Su�cient controllability conditions

We are now in a position to state su�cient controllability conditions. We begin by relating the rank
condition on a quotient group to the rank condition of (Σ).

Proposition 8. Let g be an ideal of hn invariant by D, and let G be the subgroup generated by g. Then
G is a closed Lie subgroup of Hn and the quotient Hn/G is an Abelian simply connected Lie group. The
induced system on Hn/G satis�es the rank condition as soon as (Σ) does. It is in that case controllable
in exact time T for any T > 0.

Thanks to that proposition we can state

Theorem 3. The linear system is assumed to satisfy the rank condition.

1. If (Σ) satis�es the ad-rank condition and is singular (that is d, de�ned by DZ = dz, vanishes)
then it is controllable.

2. If the invariant vector �eld Z belongs to the Lie algebra generated by B1, . . . , Bm, then the system
is controllable in exact time T for all T > 0.

3. If the controlled vectors B1, . . . , Bm are linearly independant and if m ≥ n+1, then (Σ) is control-
lable in exact time T for all T > 0.

Sketch. All the items are proved by considering a suitable subgroup of Hn and by applying Proposition
3 (and Proposition 4 for the �rst item).

6 Decoupling in H2

In this section we consider systems with two inputs in H2, hence in dimension 5.

De�nition 2. A 2 input linear system in H2 is said to be decoupled if

(i) the vectors B1 and B2 are linearly independant and [B1, B2] = 0 ;

(ii) there exists a symplectic basis (X1,Y1,X2,Y2,Z) of h2 such that Xi =Bi and the ideal span{Bi, Yi, Z}
is invariant by D, for i = 1, 2.

These systems can be put in a normal form that allows to decide their controllability.

Lemma 1. Let (Σ) be a two inputs decoupled system in H2. If it satis�es the rank condition, there exists
a symplectic basis {B1, Y1, B2, Y2, Z} such that the matrix of the derivation D be :

D =


0 b 0 0 0
1 d 0 0 0
0 0 0 b′ 0
0 0 c′ d 0
0 f 0 f ′ d

 with c′ 6= 0.

Let Gj be the subgroup of H2 generated by {Bj , Yj , Z} (it is a closed Lie subgroup of H2, see [1]).
Thanks to the particular form of D the system induces a system (Σj) on Gj for j = 1, 2. It is clear that
Gj is nothing but the Heisenberg group H1 and (Σj) a linear system for which controllability criteria are
known (see Section 3).
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Theorem 4. Let (Σ) be a two inputs decoupled system in H2 in the form of Lemma 1. It is assumed to
satisfy the rank condition. Then it is controllable if and only if one the following conditions holds :

(i) one of the systems (Σ1) and (Σ2) is controllable ;

(ii) none of the systems (Σ1) and (Σ2) is controllable but c′ < 0.

Recall that under the rank condition a regular system onH1 is controllable if and only if the eigenvalues
of the system induced on H1/Z(H1) are not real (see Theorem 1 and Corollary 2 in Section 3).

This condition is no longer necessary in H2. Indeed consider a regular system with two decoupled
cells. If their eigenvalues are real these cells are non controllable. However if the coe�cient c′ negative,
then (Σ) is controllable despite the existence of real eigenvalues in the quotient.

7 Obstruction to Controllability

It has been proved in Section 5 that the system is controllable as soon as the generator Z of D1hn

belongs to Span{B1, . . . , Bm}. The purpose being herein to state conditions of non controllability we
assume that Z 6= Span{B1, . . . , Bm}. Thanks to that assumption, we can choose a symplectic basis
(X1, Y1, . . . , Xn, Yn, Z) such that the Bj 's belong to the subspace of h

n generated by the Xi's and the Yi's.
In the associated coordinates, the di�erential equation satis�ed by the last coordinate z does not depend
on the controls, it is ż = dz + l(x1, y1, . . . , xn, yn) + Q(x1, y1, . . . , xn, yn), where dz + l(x1, y1, . . . , xn, yn)
is the linear form that comes from the last line of D and Q is a quadratic form in the 2n variables
x1, y1, . . . , xn, yn.

Theorem 5. It is assumed that Z /∈ LA{B1, . . . , Bm} and d 6= 0. If the quadratic form Q is non negative,
and if ker(Q) ⊂ ker(l), then the system is not controllable.

We can actually go further by considering some particular modi�cation of the variable z. A change of
variable z 7→ w will be said to be admissible if it has the form w = z +P (x1, y1, . . . , xn, yn), where P is a
polynomial of degree 2 with no constant term. It is clear that the di�erential equation satis�ed by w has
again the form ẇ = dw + l′(x1, y1, . . . , xn, yn) + Q′(x1, y1, . . . , xn, yn), where l′ is a linear form and Q′ is
a quadratic form in the 2n variables x1, y1, . . . , xn, yn.

Theorem 6. It is assumed that Z /∈ LA{B1, . . . , Bm} and d 6= 0.
If for some admissible change of variable the quadratic form Q′ is non negative and ker(Q′) ⊂ ker(l′),

then the system is not controllable.
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